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This paper describes the development of a tool, based on a Bayesian network model, that provides posteriori
predictions of operational risk events, aggregate operational loss distributions, and Operational Value-at-
Risk, for a structured finance operations unit located within one of Australia’s major banks. The Bayesian
network, based on a previously developed causal framework, has been designed to model the smaller and
more frequent, attritional operational loss events. Given the limited availability of risk factor event
information and operational loss data, we rely on the elicitation of subjective probabilities, sourced from
domain experts. Parameter sensitivity analysis is performed to validate and check the model’s robustness
against the beliefs of risk management and operational staff. To ensure that the domain’s evolving risk
profile is captured through time, a formal approach to organizational learning is investigated that employs
the automatic parameter adaption features of the Bayesian network model. A hypothetical case study is
then described to demonstrate model adaption and the application of the tool to operational loss
forecasting by a business unit risk manager.

Journal of the Operational Research Society (2015) 66(1), 86–115. doi:10.1057/jors.2013.49

Published online 11 December 2013

Keywords: banking; finance; operational risk; probabilistic methods; artificial intelligence; Bayesian networks

Introduction

This paper presents a case study describing the development

of an operational risk tool that supports a risk manager in

the measurement, monitoring, reporting and control of

operational risks at a local business unit level. The focus is

on the smaller, more frequent, attritional loss events, rather

than the larger, less frequent and potentially catastrophic

events. The tool has been developed for a functioning busi-

ness unit, Structured Finance Operations (SFO), located

within the wholesale banking division of a major Australian

commercial bank. The unit’s role is to provide operational

and transactional support for the portfolio of structured

finance products provided to the bank’s corporate clients.

A core component of the tool developed in this paper is

a Bayesian network model that encapsulates the probabi-

listic and causal features of the domain. The design of the

model’s network structure was developed and described

previously in Sanford and Moosa (2012).

Although it may be argued that the modelling and con-

trol of larger, less frequent loss events is a more pressing

priority, controlling smaller failures may also have its

benefits. When large operational failures occur, it is not

uncommon to find that the cause or causes are subse-

quently traced to a series of smaller, innocuous contingent

failures. Therefore, tools designed to support operational

risk management at the local level may, in addition to

minimizing the smaller more frequent losses, assist in

reducing the probability of larger events.

The operational risk tool described in this paper was

developed to assist a risk manager to maintain high situa-

tional awareness of a local domain and its risk drivers.

A key feature of the tool is the inclusion of automated

model adaption that allows a domain’s changing risk

profile to be captured in an efficient, low cost and timely

manner, and which supports both individual and organiza-

tional learning. An important output from the tool com-

prises the forecasts over varying time horizons of aggregate

loss distributions and Operational Value-at-Risk (OpVaR).

Use of the tool also improves risk communications within

the organization by making operational risk, subsequent

losses and their key drivers more explicit.

Basel II and operational risk

Prior to the 1990s, the operational risks inherent in

financial institutions were considered minor in comparison
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with their credit and market risks. Management resources

for the measurement and control of operational risks were

therefore allocated accordingly. But with the advent of the

1990s, and the arrival of new information and commu-

nications technologies, financial innovation, and increasing

globalization, the prevailing view of the significance of

operational risk required a reassessment. The signifi-

cance of operational risk within this new environment

was dramatically illustrated in 1995, when a single

derivatives trader operating out of Singapore caused

the 230-year-old London merchant bank, Barings, to

collapse. Three years after this event, a report by the

Basel Committee on Bank Supervision (BCBS) noted

that although the awareness of operational risk among

bank boards and senior management had increased,

the measurement and monitoring systems were still

immature, with many conceptual and data hurdles to

overcome. In June 2004, BCBS introduced a new

supervisory framework, replacing the previous model

that had been in place since 1988. Known as Basel II,

this new framework introduced for the first time ope-

rational risk as a distinct bank risk category, alongside

that of market and credit risk.

The Basel Committee defines operational risk as ‘ . . . the

risk of loss resulting from inadequate or failed internal

processes, people and systems or from external events’.

Set out within Basel II were three measurement methodo-

logies that banks could adopt to calculate their opera-

tional risk capital requirements. These included the Basic

Indicator approach, the Standardized approach, and the

Advanced Measurement Approach (AMA). The metho-

dology most readily adopted by major, internationally

active banks was the AMA, which allowed financial

institutions the discretion to develop and implement their

own internal operational risk capital allocation models,

provided that the models were approved by their local

prudential authority.

Underlying the changes introduced in Basel II was the

need for central bankers and prudential supervisors to be

confident that the banks under their authority would main-

tain sufficient capital to absorb severe loss events regardless

of origin, whether due to credit, market or operational risk.

Although the implementation of Basel II was completed by

2008, the need for continued improvements in operational

risk models and management systems remains. Serious

operational loss events are regularly reported for example

(Société Générale, 2008), while the funds tied up in risk

capital allocations represent a substantial cost to institu-

tions. It remains important therefore that organizations

seek to understand and reduce their risks in order to reduce

not only loss events, but the capital costs associated with

absorbing them.

Following the global financial crisis, the BCBS intro-

duced new rules under what is known as Basel III. New

provisions have been put in place to deal with liquidity and

leverage, which were the reasons for the failure of financial

institutions such as Bear Stearns and Northern Rock.

On the way to implementing Basel III an intermediate

accord, Basel 2.5, was implemented in January 2012 (see,

eg, Moosa, 2010, 2011, 2012; Moosa and Burns, 2012).

In this intermediate accord, emphasis was shifted back

to market risk, perhaps due to the belief that the losses

incurred during the global financial crisis were mostly

market losses. However, the new emphasis on liquidity risk

is one type of settlement risk which is a type of operational

risk. Furthermore, massive operational losses are announ-

ced as frequently as ever. In June 2012, Barclay Bank was

fined some $400 million for manipulating LIBOR.

Background and motivation

Driving the development of operational risk models to date

has been the need for financial institutions to improve their

operational risk capital allocation and insurance coverage.

Modelling has been focused on aggregate losses at the firm

or portfolio level, using actuarial-based models similar to

those in accident and property loss insurance. Lacking the

necessary organizational detail however, these models are

less helpful when the focus shifts from capital allocation to

operational risk control. For control purposes, models

must encapsulate greater systems detail, including the key

risk drivers of operational loss events. Such models would

be useful for local risk managers, providing loss predic-

tions, as well as the loss attribution of specific key risk

drivers and their causal relationships. When addressing

issues of task and process control, risk mitigation and

operational improvements, such information would assist

in the prioritization and directing of resources.

The systems level approach described in this paper

draws from systems analysis and probabilistic risk analysis

(PRA) techniques (see Bedford and Cooke, 2001). These

techniques are used to build a ‘bottom-up’ model of the

internal systems and human factors within an operational

domain located within a major Australian bank. The expe-

rience of modelling at the systems level has highlighted

many issues, particularly those related to model com-

plexity, data availability, causality, information gain, and

model adaption.

A systems level model requires the incorporation of

greater domain information. With this, larger numbers of

variables and their associations means increased model

complexity. This demand for additional data also means

that it is often necessary to augment the limited data with

subjective information provided by local domain experts.

A need for greater domain detail also makes accessing to

the specifics of an organization’s internal operations

necessary, increasing the importance of local cooperation

and coordination between a model’s development team

and the domain personnel, which potentially can introduce
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additional political and cultural complexities to the model’s

development.

The modelling task complexity can also be increased

as a result of the technical and task specifics of the

environment. Modern financial institutions for example

rely increasingly on sophisticated socio-technical systems

to manage their business and commercial processes,

distributed both locally and globally. Such domains rely

on the use of information and communications technolo-

gies, and the sophisticated knowledge and skills of their

staff, to ensure efficient operations. To measure the per-

formances of people, machines and their interfaces, the

system level model needs to accommodate a mixture of

both quantitative and qualitative performance measures.

In such environments, the coupling between, and the

latency of certain variables can make their state measure-

ment difficult. Software bugs and psychological states for

example are difficult to measure as they are not readily

observable. Components that are highly coupled make

measurement of a system’s state difficult as it may require

multiple contemporaneous observations.

A key motivation for the development of a systems level

model is to extend operational risk models beyond risk

capital allocation and towards operational risk interven-

tion and control. This requires a deeper understanding

of causation in operational risk events that are necessary

for the implementation of control. A systems level model

needs to incorporate the antecedent events and causal

pathways of operational losses. The antecedents, or key

risk drivers, include events based on human, system or

processes failures, either originating internally within the

business unit or externally. A system level model therefore

needs to be sufficiently flexible to accommodate a diverse

set of potential risk factors. Isolating and measuring the

individual risk factors, when complex causal interactions or

latency exist, can make modelling them difficult. Risk

drivers such as human factors can be particularly difficult

to model.

The emphasis on causal relationships is a departure from

the existing statistical loss models where correlation, not

causation, has been the major concern. Statisticians have

traditionally treated with suspicion the causal interpre-

tation of their models when derived from non-experimental

or observational data. To operationalize the concept of

causation within the systems level model, we use a ‘mani-

pulationist’ perspective, similar to that used in constructing

fault and event trees.1

A key component of the tool developed in this research

is its automated model adaption facility. The incorporation

of an automated adaption facility makes the model’s

updating more efficient and timelier, reducing its reliance

on the subjective judgements of experts. This then reduces

the demands on costly operations staff, reducing the tools

maintenance costs. Keeping the model updated in a con-

sistent and timely manner in such a complex domain

as SFO would be difficult without automation. A more

efficient integration of new domain data with the existing

model will ensure timelier benefits and model validity even

in a domain whose risk profile is changing.

Of importance in determining the successful adoption

of any information tool is the level of information gain

that the targeted end users perceive from using the tool.

Information gain is defined here as the information benefits

achieved for users, less their costs, relative to the users’

existing information sources. In the case of SFO, the

existing information sources for operational risk include

the formal categories of internal audit, the current

operational risk reporting, and informal sources such as

the tacit operational risk knowledge and practical experi-

ence embedded within the risk manager, operational staff

and organizational networks. While the information bene-

fits to a local risk manager have been detailed above, the

costs of achieving these benefits have not. The main costs

relate to the resources necessary to maintain the model.

Maintenance of the model includes regular domain data

capture and entry, domain monitoring, and report gene-

ration carried out by local staff. The burden of such costs

can be more readily dispersed if the benefits of the tools

outputs are relevant to as wider audience as possible. The

model’s summary and aggregate outputs, its ability to

communicate and quantify risks, and its ability to adapt to

a changing risk profile, suggest a wider interest beyond the

local domain. The bank’s broader operational risk function

and its internal audit function are immediate beneficiaries,

while its ability to provide information on local operational

risk-adjusted returns would be of great interest to the

bank’s senior management.

Literature survey

Bayesian network models have and continue to be applied

to a diverse set of problem domains. Examples include

transportation (Trucco et al, 2008), systems dependability

(Sigurdsson et al, 2001; Neil et al, 2008), infrastructure

(Willems et al, 2005), medical and health-care provision

(van der Gaag et al, 2002; Lucas et al, 2004; Cornalba,

2009), environmental modelling (Bromley et al, 2005;

Uusitalo, 2007), legal/evidential reasoning (Kadane and

Schum, 1996), forensic science (Taroni et al, 2006), venture

capital decision making (Kemmerer et al, 2002), project

management (Khodakarami et al, 2007), customer service

delivery (Anderson et al, 2004), new product development

(Cooper, 2000), traffic accident modelling (Davis, 2003)

1We use a manipulability account of causation whereby, if one

intervenes within a system to change the state of an object A, and this

results in a change in the state of another object B, then A’s state is said

to cause object B’s state. However, if one intervenes within a system to

change the state of an object B, but object A’s state remains unchanged,

then object B’s state does not cause object A’s state.
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and national security and terrorist threats (Paté-Cornell

and Guikema, 2002). A common use for Bayesian net-

works in many of these developments is the facilitation of

reasoning and decision making under uncertainty.

Although the extant literature on Bayesian network

applications to operational risk is still small, a number of

papers are discussed in Sanford and Moosa (2012). These

include Alexander (2000, 2003), Cornalba and Giudici

(2004), Neil et al (2005), Adusei-Poku et al (2007), Cowell

et al (2007), Mittnik and Starobinskaya (2010), Bonafede

and Giudici (2007), Moosa (2008), Neil et al (2009), and

Aquaro et al (2010).

Although the number of specific papers related to ope-

rational risk and Bayesian networks is small, applications

to allied research fields such as quality, safety and reliabi-

lity engineering have also produced models and tools that

are relevant and adaptable to the problems of operational

risk within financial institutions. Examples of these include

Fenton et al (1998), Fenton and Neil (2000), Neil et al

(2000, 2001), Bobbio et al (2001), Sigurdsson et al (2001),

Bobbio et al (2003); and more recently, Boudali and Dugan

(2005), Weber and Jouffe (2006), Wilson and Huzurbazar

(2007), Neil et al (2008), Marquez et al (2010), Groth et al

(2010), and Nordgård and Sand (2010).

As part of the development of the Bayesian network,

it was necessary for the purpose of parameterizing the

model to elicit the subjective beliefs of local domain

experts. A great deal of material exists covering expert

elicitation; however, Granger-Morgan and Henrion (1990)

provide an excellent general overview. A more specific

discussion covering Bayesian network development using

expert elicitation is found in Renooij (2001). Kjærulff and

Madsen (2008) provide a practical discussion on the con-

struction and refinement of Bayesian network models,

using a combination of domain expert elicitation, sensi-

tivity analysis and Bayesian network adaption. Other

Bayesian network development methodologies that incor-

porate expert elicitation are also discussed in Korb and

Nicholson (2004) andWoodberry et al (2004). An extensive

coverage of many of the cognitive biases associated with

elicitation can be found in Baron (2008). Structured

frameworks to expert elicitation are described in Cooke

and Goossens (1999, 2004).

A model validation technique commonly used in

Bayesian network development is sensitivity analysis.

Two distinctive forms of sensitivity analysis are available.

Parameter sensitivity analysis, which measures the sensi-

tivity of output node probabilities Pr(Xi) and Pr(Xi | e) to

changes in model CPT parameters, y, and evidence sensi-

tivity analysis, which measures the sensitivity of output

node probabilities to changes in the domain observations

or evidence e. Coupé et al (1999), Coupé and van der Gaag

(2002), van der Gaag et al (2002, 2007), Bednarski et al

(2004) provide discussions of Bayesian network model

validation using sensitivity analysis.

Manual construction of all but the most simple Bayesian

network model can be very costly in terms of scarce human

resources and expertise. Algorithms have been developed

to reduce these costs by allowing a model to be auto-

matically constructed and parameterized using the avai-

lable domain data. Such cost and benefits warrant that in

the future, more automated adaption opportunities for

both structural and parameter estimation are employed.

Neapolitan (2004) provides a broad coverage of structural

adaption and parameter updating algorithms, while Koller

and Friedman (2009) cover many of the most recent

technical developments in Bayesian networks, including

details of model and parameter adaption.

Bayesian networks

To assist in making further technical discussions clear and

consistent, a formal description of a discrete Bayesian net-

work model is presented, and several notational conven-

tions introduced. We begin by describing a discrete

Bayesian network model, denoted B, as comprising two

distinct components: G a qualitative component and X a

quantitative component. X is represented as an (n � 1)

vector, X¼ {X1,X2, . . . ,Xn}
0, where each Xi contains the

individual parameter sets defining n nodes, Xi, that

comprise the variables within the Bayesian network model.

For a discrete Bayesian network model, all nodes Xi have a

finite set of j distinct states.

The G component contains details that describe the

Bayesian network model’s network structure, which cap-

tures the manner in which each node Xi within the model

relate. Graphically, this structure takes the form of a

directed acyclic graph (DAG) within which the relevance,

conditional dependence/independence, or causal influences

between nodes are encoded. Any given node Xi is connec-

ted to other nodes by sets of directed arcs. When an arc

proceeds from one node directly to a second node, the first

node is defined as the parent of the second node and the

second node is described as a child of the parent. A node

may have no parents or one or more parents. Throughout

the paper, we denote these sets of parent nodes for any

given node Xi as Pa(Xi), and we denote the kth state

configuration of these same parents as Pak(Xi). If a child

node has two parent nodes, with each parent having two

possible states, then the number of possible parent

configurations is four.

The parameters of node Xi, which are conditional on the

kth state configuration of the parent nodes, are denoted as

p(Xi|Pak(Xi)), which can be represented as a ( j � 1) vector

(y1, y2, . . . , yj)0ik. The vector subscript ik indicates that

these parameters relate specifically to states of node Xi,

when its parent nodes are in their kth state configuration.

The complete set of probability parameters for node Xi is

denoted as YiAXi, which is a ( j � k) matrix referred to as
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Xi’s conditional probability table (CPT).

Yi ¼

y11 y12 � � � y1k

y21 y22 ..
.

y2k
..
. ..

. ..
. ..

.

yj1 yj2 � � � yjk

2
66664

3
77775
i

ð1Þ

When node Xi has no parents, then k¼ 1 and Hi is a

( j � 1) vector. Each parameter in node Xi’s CPT, as shown

in Equation (1), is real valued on a closed interval [0, 1].

Each parameter value in Hi represents the probability that

Xi is in its jth state, conditional on its parents being in their

kth state configuration. Therefore, each parameter in

Equation (1) represents yijk¼ p(Xi¼ j|Pak(Xi)). Since each

yijk is a conditional probability, each column in Equation

(1) must add up to one, so the number of free parameters in

each column of the CPT is ( j�1).
Two remaining parameters associated with node Xi that

play a particularly important role with regards to auto-

mated model adaption are the experience parameter zi, and
the fading parameter, Zi. Both parameters take the form of

k � 1 vectors, zi¼ {zi1, zi2, . . . , zik}
0
and Zi¼ {Zi1, Zi2, . . . ,

Zik}0. This means that there is one experience parameter

and one fading parameter for each parent node configura-

tion of node Xi. Any node within the model that requires

automated updating of its CPT parameters must have at

least the experience parameter initiated for each of its

parent node configurations. Further information related to

these important parameters is left to a later detailed

discussion of the model’s parameter adaption automation.

The complete parameter set for a node Xi is therefore

Xi¼ [Yi, zi, Zi].
Once G has been defined, and X has had its para-

meter values assigned, the Bayesian network model can

be used for inference. When no state information regard-

ing the nodes has been entered into the network, the

Bayesian network will infer the a priori marginal distri-

butions, Pr(Xi), of each node Xi in the model. In situa-

tions where some domain states are observed, these

observed states can be instantiated into the model B as

evidence e. The Bayesian network can then be used to infer

the a posteriori marginal distributions, Pr(Xi|e), of the

remaining unobserved nodes Xi, conditional on the

evidence e.2

In order to infer the a priori and a posteriori marginal

distributions, it is necessary for the Bayesian network to

sum over each unobserved node’s CPT state probabilities.

Although this is conceptually straightforward, in a reason-

ably large network it is computationally demanding

on both memory storage and time. However, for discrete

Bayesian networks, fast, efficient and exact inference

algorithms are now available. The Bayesian network

model described in this paper uses one of the fastest and

most efficient algorithms, originally developed by Laur-

itzen and Spiegelhalter (1988).

Although the formal representation of a discrete

Bayesian network given above is sufficient for the model

developed in this paper, it should not be presumed to be

definitive, as many variations in implementation exist. For

an extensive discussion of these alternative implementa-

tions, refer to Koller and Friedman (2009).

Methodology

The methodology used to develop the tool’s central

Bayesian network model draws on Renooij (2001), Korb

and Nicholson (2004) and Woodberry et al (2004). These

methodologies emphasize the use of domain experts for

probability elicitation and model construction, while

incorporating the iterative feedback loops and re-modelling

cycles appropriate for systems level operational risk

modelling.3,4

The Bayesian network model’s development proceeded

through four distinct stages. The first three stages being

based on Korb and Nicholson (2004). The first stage,

which was covered in Sanford and Moosa (2012), involved

the model’s structural development and evaluation. The

second stage of the development involved the use of local

domain experts to elicit values for the CPT parameters,

while the third stage proceeded with model validation using

parameter sensitivity analysis. The fourth and final stage

was added in recognition of the need for ongoing refine-

ment throughout the working life of the model, which

involves the regular automated updating of the CPT

parameters as new operational events occurred. It is the

second, third and fourth developmental stages that are

detailed in this paper.

The model

A detailed description of the model and the rationale

behind its structural form is set out in Sanford and Moosa

(2012). The model design was developed in collabora-

tion with staff from the Operational Risk and SFO

units, located within the wholesale banking division of

one of Australia’s largest banks. The director of quality

2To distinguish between the marginal probabilities inferred from the

network, and the conditional probabilities stored in the CPTs, marginal

and conditional probabilities are denoted as Pr( . . . ), and p( . . . ),

respectively.

3Although the Bayesian network model development tool does come

with automated network construction and parameter estimation

functionality, absence of historical domain data makes these automated

facilities unavailable.
4The Bayesian network development tool used for the research was

HUGIN ResearcherTM v7.0, published by HUGIN EXPERT A/S

website: www.hugin.com
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assurance for SFO was the unit’s point of contact for

the tool’s central model development. This person is referred

to as the ‘risk manager’ throughout the paper. The risk

manager represented the targeted end user for which the

Bayesian network model was conceived and designed. They

had extensive knowledge and experience of SFO’s domain,

its operational processes, its risk exposures, and its staffing.

A graphical representation of the central model design

and a brief description of its nodes are given in Figure 1

and Table 1. The design is unique in that it incorporates

two existing analytical frameworks, one related to human

error modes, and the other to socio-technical task analysis.

The human error framework incorporates the generic human

error categories developed previously by Reason (1990), while

the second framework uses human factor loadings associated

with the subjective workload assessment technique (SWAT)

developed previously by Reid and Nygren (1988).

The model is partly taxonomic (see Pearl, 1988,

pp 333–337) and partly causal. Its taxonomic features

classify operational risk events and their various causes

via the two taxonomic frameworks of Reid and Nygren

(1988) and Reason (1990). The network is not strictly

taxonomic in that some classifications are not mutually

exclusive for any given transaction. For example, it is

possible for the risk manager to identify more than one

human error type as a causal antecedent in the recording of

any one operational loss event.

The model is partitioned into seven broad categories:

(i) skills, experience and working environment; (ii) trans-

action characteristics; (iii) human errors; (iv) error types;

Transaction Characteristics 

Human Errors 

Work Environ. –  Skills & Experience 

Error Types 

Regulatory
Events

Exposure
Management 
Events

Payment
Events

1

2

3
4

5

1
2

3

4
5

6

4321

1

2

3

4

5

6

7

8

1

2

3

4
5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

1

1.1

1.2

1.3

2

2.1

2.2

2.3

3

3.1

3.2 3.3

4

4.1

4.2

4.3

Transaction Type

Special Purpose
Vehicle

Data Capture Mode

Transaction Size

Payment Size

Mode error

Mode error =>
Data Integrity Error

Mode error =>
Transaction

Implementation

Mode error =>
Oversight Control Error

Oversight Control Error

Lapse =>
Oversight Control Error

Lapse =>
Transaction

Implementation

Transaction
Implementation

Error
Data Integrity Error

Slip =>
Oversight Control Error

Lapse =>
Data Integrity Error

LapseSlip

Slip =>
Transaction

Implementation

Slip =>
Data Integrity Error

Mistake

Mistake =>
Transaction

Implementation

Mistake =>
Data Integrity Error

Mistake =>
Oversight Control Error

Systems Error

Workload

Time load
Mental Effort Load

Stress Load

Active Transaction
Load

Skills/Experience

Potential Regulatory/
Legal/... failure

Regulatory
(Notional OpRisk loss)

Regulatory
(Actual OpRisk Loss)

Regulatory/Legal/Tax
Failure

System Error
=> Regulatory Failure

Data Integrity Error
=> Regulatory Failure

Transaction
Implementation...

=> Regulatory Failure

Oversight Control Error
=> Regulatory Failure

Oversight Control Error
=> Exposure Failure

Transaction
Implementation...

=> Exposure Failure

Data Integrity Error
=> Exposure Failure

System Error
=> Exposure Failure

Expeosure
Management Fail...

Exposure Management
(Actual OpRisk Loss)

Market Volatility

Exposure Management
(Notional OpRisk Loss)

Potential Exposure
Failure

Oversight Control Error
=> Payment Failure

Transaction
Implementation...

=> Payment Failure

Data Integrity Error
=> Payment Failure

System Error
=> Payment Failure

Payment Failure

Payments
(Actual OpRisk loss)

Payment Days Delay

Interest Rates

Currency

Potential Payment
Failure

Payment
(notional OpRisk loss)

Figure 1 SFO operational risk network model.
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(v) payment failure events; (vi) exposure management

events; and (vii) regulatory/legal/tax events. The nodes

within each broad category represent a domain random

variable of interest to the risk manager. They are therefore

considered to be risk factors that influence the occurrence

of operational loss events. Arrows are interpreted as repre-

senting causal relations between node states (see Table 1).

The model is designed to generate probabilities of identified

operational loss events within SFO. These include payment

failures, exposure management failures and regulatory/

legal/tax failures. The model also provides probability

distributions over the severity of actual operational losses,

as well as notional loss amounts associated with near miss

events.5

In the Bayesian network model, continuous valued

nodes were approximated by static discretization. For

the initial settings, the number of partitions, or the degree

of static discretization, was influenced by the desire to

minimize model complexity and reduce the elicitation and

maintenance demands on SFO staff. Having fewer rather

than more node state partitions means of course that the

discrete approximations of the continuous variables within

the domain are less accurate. Being static partitions also

means that they will have to be reassessed from time to

time during the working life of the model to ensure that

excessive information loss is not occurring. Neil et al (2008)

note that static discretization is unacceptable for critical

systems, where reasonable accuracy is expected. In defence

of the model’s existing discretization scheme, we invoke

Simon’s concept of ‘bounded rationality’ (Simon, 1996),

acknowledging that at this stage in the model’s develop-

ment the current static discretization is a compromise of

‘satisficing’ over ‘optimizing’.

Following completion of the network design, specifi-

cation of all nodes and their state spaces, and validation of

the design, as detailed in Sanford and Moosa (2012), the

next stage of development required the elicitation of the

CPT probabilities for each of the nodes.

Table 1 Individual nodes [number of states] {number of parameters}

Work environment—skills & experience Human errors
1 Skills/Experience [3] {26} 1 Mistake [2] {78}
2 Active Transaction Load [6] {15} 1.1 Mistake=4 Data Integrity Error [2] {2}
3 Stress Load [3] {156} 1.2 Mistake=4 Transact.Implement.Error [2] {2}
4 Time Load [3] {36} 1.3 Mistake=4 Oversight Control Error [2] {2}
5 Mental Effort Load [3] {156} 2 Slip [2] {78}
6 Work Load [3] {0} 2.1 Slip=4 Data Integrity Error [2] {2}

2.2 Slip=4 Transact.Implement.Error [2] {2}
Transaction characteristics 2.3 Slip=4 Oversight Control Error [2] {2}
1 Transaction Type [13] {12} 3 Lapse [2] {78}
2 Special Purpose Vehicle [2] {13} 3.1 Lapse=4 Data Integrity Error [2] {2}
3 Data Capture Mode [2] {26} 3.2 Lapse=4 Transact.Implement.Error [2] {2}
4 Transaction Size [7] {78} 3.3 Lapse=4 Oversight Control Error [2] {2}
5 Payment Size [7] {546} 4 Mode Error [2] {78}

4.1 Mode Error=4 Data Integrity Error [2] {2}
Exposure management events 4.2 Mode Error=4 Transact.Implement.Error [2] {2}
1 Oversight Control Error=4 Exposure Failure [2] {1} 4.3 Mode Error=4 Oversight Control Error [2] {2}
2 Trans.Impl.Error=4 Exposure Failure [2] {1}
3 Data Integrity Error=4 Exposure Failure [2] {1} Error types
4 System Error=4 Exposure Failure [2] {1} 1 System Error [2] {1}
5 Exposure Failure Near Miss [2] {0} 2 Data Integrity Error [2] {0}
6 Exposure Management (Notional Op Risk Loss) [11] {0} 3 Transact.Implement.Error [2] {0}
7 Exposure Management Failure [2] {1} 4 Oversight Control Error [2] {0}
8 Exposure Management (Actual Op Risk Loss) [11] {0}
9 Market Volatility [8] {7} Payment events

1 Oversight Control Error=4 Payment Failure [2] {1}
Regulatory events 2 Transact.Implement.Error=4 Payment Failure [2] {1}
1 Oversight Control Error=4 Regulatory Event [2] {1} 3 Data Integrity Error=4 Payment Failure [2] {1}
2 Trans.Impl.Error=4 Regulatory Event [2] {1} 4 System Error=4 Payment Failure [2] {1}
3 Data Integrity Error=4 Regulatory Event [2] {1} 5 Payment Near Miss [2] {0}
4 System Error=4 Regulatory Event [2] {1} 6 Payments (Notional Op Risk Loss) [21] {0}
5 Regulatory Near Miss [2] {0} 7 Payment Failure [2] {1}
6 Regulatory (Notional Op Risk Loss) [4] {2} 8 Payments (Actual Op Risk Loss) [21] {0}
7 Regulatory/Legal/Tax Failure [2] {1} 9 Currency [9] {8}
8 Regulatory (Actual Op Risk Loss) [4] {2} 10 Interest Rates [9] {72}

11 Payment Days Delay [6] {4}

5An extensive, detailed description document—containing all node

definitions, states, probabilities, as well as experience and fading table

settings—is available on request from the corresponding author.
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Parameter elicitation

The elicitation exercise required the determination of

more than 1800 CPT parameter values. In carrying out

this task, the following steps as described in Renooij (2001)

were followed. The elicitation process involved (i) selection

and motivation of the domain experts, (ii) training of the

experts, (iii) structuring of the elicitation questions, (iv)

eliciting and documenting of the domain experts judgements,

and finally (v) verification of the elicited judgements.

Selection of the elicitation team was carried out by the

risk manager. Criteria for team selection included the

candidate’s technical knowledge of SFO operations, their

familiarity with SFO operational risk, their operational

experience and maturity, and their overall interest and

motivation to be involved in the project. On the completion

of the selection process the elicitation team comprised three

personnel, one operational risk analyst from the bank’s

Operational Risk department, an SFO manager, and an

SFO analyst. At the selection stage, a decision was made

not to include the risk manager as part of the elicitation

team, despite their detailed knowledge of the domain. This

decision freed the risk manager to provide later a

secondary source of subjective expertise for cross-valida-

tion of the elicitation team’s judgements.

Because the elicitation team members were full-time

operational staff, with existing work commitments and

responsibilities, it was unavoidable that most of their

elicitation tasks would have to be completed independently

and remotely of the knowledge engineer and risk manager.

In response to this situation, the knowledge engineer

developed a comprehensive data capture spread-sheet for

use by all elicitation team members, which would provide

them with additional support during the process.

Within the data capture spread-sheet, each node requi-

ring elicitation was represented by a separate worksheet.

Contained within each worksheet were the specific elicita-

tion questions related to that node, and its response

capture cells. Tables 2 and 3 provide examples of elicitation

questions and data entry cells. These examples show how

elicitation questions were typically framed, with language

and concepts that were both clear and familiar to SFO

staff, and free of any unfamiliar statistical terms. All elici-

tation questions required the expert to provide an estimate

of either a count or a proportion as a response. As is shown

in Table 2, the resultant node CPT parameter probability

was determined from the expert’s expected count of lapse

errors, over the 1000 transactions described in the elicita-

tion question, including upper and lower bound probabi-

lities derived from the expert’s beliefs as to what counts

were unlikely to be observed either above or below. All

worksheets displayed example responses and any relevant

definitions (see the appendix for examples of reference

documentation). Clear definitions of any conceptual con-

structs, such as the human error categories ‘mistake’, ‘slip’,

‘lapse’, or ‘mode error’, were detailed within the relevant

worksheets for quick reference.

During the initial elicitation meeting, each elicitation team

member was allocated a data capture spread-sheet that

contained the nodes for which they were to be responsible.

Table 2 Sample of elicitation capture screen for Lapse error probabilities conditional on transaction type=LOAN, and the presence
or absence of an SPV, and the various workload levels

1. Given your experience of SFO, if at each different level of work load, and with either an SPV involved or not involved, how many of
1000 transactions would you expect to result in a lapse error, material enough to be recorded as causing an actual OpRisk Event or

potential OpRisk Event? Give your ‘Very Surprised if count is less than this’ (5th percentile), Expected Count (50th percentile), ‘Very
surprised if count is greater than this’ (95th percentile). You can revise your understanding of ‘Lapse’ errors and Workload
definitions by referring to the accompanying definitions.

Transaction type SPV? Workload

LOAN TRUE 3– o 5 0 3 6
5– o 7 1 4 7

7–9 2 5 8
FALSE 3– o 5 0 2 5

5– o 7 1 3 6
7–9 2 4 7

Very surprised if
count is less than this

Expected count Very surprised if count
is greater than this

Elicited probabilities
LOAN TRUE 3– o 5 0.00000 0.00300 0.00600

5– o 7 0.00100 0.00400 0.00700
7–9 0.00200 0.00500 0.00800

FALSE 3– o 5 0.00000 0.00200 0.00500
5– o 7 0.00100 0.00300 0.00600

7–9 0.00200 0.00400 0.00700

Further elicitation capture cells (not shown) were prepared for all the remaining transaction types and human errors ‘Mistake’, ‘Slip’ and ‘Mode error’.

Andrew Sanford and Imad Moosa—A Bayesian network approach 93



www.manaraa.com

Table 3 Sample of elicitation capture screen with recorded entries for Mental Effort Loads conditional on transaction type=LOAN, the presences or otherwise of a special
purpose vehicle and the staff experience levels (Analyst/Senior Analyst/Associate)

1. Given your experience of working as an Analyst/Senior/Associate in SFO, when working on a typical LOAN transaction, with or without a special purpose vehicle, what
would you describe as the most common, or typical, distribution of mental effort loads associated with this task.

Each row must sum to 1

Transaction type Using a SPV? Skill/Experience Very little conscious mental
effort or concentration required.
Activity is almost automatic,
requiring little or no attention

Moderate conscious mental
effort or concentration required.

Complexity of activity is
moderately high due to

uncertainty, unpredictability,
or unfamiliarity

Extensive mental effort and
concentration necessary.
Very complex activity
requiring total attention

Uncertainty level
(Very high, high,
medium, low)

Example: LOAN Yes Analyst 0.3 0.55 0.15 High
Senior analyst 0.45 0.45 0.1 Medium
Associate 0.6 0.4 0 High

LOAN Yes Analyst 0.0 0.5 0.5 High
Senior analyst 0.0 0.5 0.5 High
Associate 0.2 0.8 0.0 High

LOAN No Analyst 0.3 0.5 0.2 High
Senior analyst 0.3 0.5 0.2 High
Associate 0.2 0.8 0.0 High

Further elicitation capture cells (not shown) were prepared for all the remaining transaction types.
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Such node allocations had been previously determined by

the knowledge engineer and risk manager, based on their

assessment of the specific knowledge and experience of

each team member relative to the SFO domain. Following

these allocations, the knowledge engineer, with assistance

from the risk manager, instructed the team on the elicita-

tion process, its iterative nature, and its relationship to the

overall project.

All nodes were explained to the team during the training

session. Those nodes that were less familiar to SFO staff,

such as error type and human error classifications, were

given particularly detailed explanation. Common elicitation

biases, such as availability, anchoring, representativeness,

and overconfidence (see Renooij, 2001), were also discussed,

with descriptions of each included within the data capture

spread-sheet for future reference as required.

Emphasized during the training session was the impor-

tance of capturing the uncertainty level associated with

each expert’s response. To capture uncertainty, two distinct

methods were used. The first required the expert to give

a response that represented the value that they would

expect to observe, and two upper and lower bounded res-

ponses that they would be ‘very surprised’ to see excee-

ded. The lower, expected and upper values would be

re-interpreted later by the knowledge engineer as the 5th

percentile (lower bound), the 50th percentile (expected) and

the 95th percentile (upper bound), over the distribution of

the CPT parameter value concerned. This approach can be

seen in the elicitation template of Table 2.

With the second, alternative uncertainty capture method

each expert was asked to nominate their subjective level of

uncertainty based on four pre-specified levels: ‘very high’,

‘high’, ‘medium’, and ‘low’ uncertainty, for each node state

probability elicited, for a given parent node configuration.

This method is shown in the elicitation template of Table 3.

Each nominated uncertainty level would then be reinter-

preted as a setting for the experience parameter zi value.
Very high, high, medium, and low uncertainties were

allocated experience value settings of 50, 100, 200, and 400.

The lower the experience parameter value, the higher the

uncertainty considered. Following the elicitations, all

uncertainty levels nominated by the elicitation team were

found to be either ‘very high’, ‘high’, or ‘medium’.

Although experience values are important for uncer-

tainty capture, the relationship between them cannot be

made clearer without first providing a more detail expla-

nation of the Bayesian network inferential algorithm and

the assumptions underlying the adaption method used by

the model. While a discussion is left to the later section

‘Organizational Learning through Model Adaption’, in the

interim an appreciation of the relationship can be had by

consideration of the following. If it is assumed that node

Xi’s CPT probability parameters for a given parent config-

uration k, that is, yik, are distributed under a j-dimensional

multivariate Dirichlet, then by using Equation (10) below,

the variances of each of the j components of yik can be

calculated using knowledge of the kth experience value

in zi. According to Equation (10), the variance of

parameter yijk, ceteris paribus, will be smaller, that is, less

uncertain (larger, ie more uncertain), when the value of the

kth component of the experience parameter zi becomes

larger (smaller). Therefore, the values assigned to the expe-

rience parameters, as in those assigned for each uncertainty

level, have an impact on the variance of the probability

parameter, if it is assumed to be distributed under a

Dirichlet distribution.

The correspondence between the second method of

uncertainty capture, and the technical requirements for

incorporating second-order uncertainty into the CPT

parameters meant that the second capture method was

the preferred approach. Those nodes that had initially used

the first uncertainty capture approach were later adjusted

to incorporate the uncertainty levels associated with the

second capture method. To ensure continuity between the

capture methods, the adjustment was performed by the

relevant elicitation team members with support from the

knowledge engineer.

On the completion of the elicitation training, team

members dispersed to carry out their elicitation tasks,

primarily as a background activity to their regular work

responsibilities. The operational risk analyst and SFO staff

completed their responses in three and five weeks,

respectively. During the elicitation period, team members

maintained communications with the knowledge engineer

and risk manager, to ensure that any issues could be

addressed as they arose.

On the completion of the data capture phase of the

elicitation, validation of responses for each node was

carried out by the risk manager and knowledge engineer

using a formal walk-through of the captured responses.

For any responses judged to be higher or lower than

expectations, an additional elicitation meeting was ar-

ranged to discuss the deviation with the relevant team

member and risk manager. Iterations between the expert

responses and response validations continued over several

weeks until all elicitation team members, the knowledge

engineer, and risk manager were satisfied with the elicita-

tion responses provided.

Once all the counts, proportions and uncertainty levels

had been documented and cross-validated, the knowledge

engineer converted the expert’s final responses into pro-

babilities and experience values for entry into the CPTs.

Given the manner in which the elicitation questions

were framed, and the response format of either counts or

proportions, conversion to probabilities was relatively

straightforward. For example, as with the Lapse Error

node, the elicitation question asked the expert to specify

their judgement of the count of Lapse Error events

under three different workload levels, based on 1000 loan

transactions. Probabilities were generated by taking the
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response count and dividing by the number of 1000 loan

transactions.6 Implicit in this approach was that the

responses provided by the experts represented their beliefs

with regards to long-term averages within the domain.

Once all CPT inputs had been completed, the Bayesian

network was then able to infer the marginal probability

distributions for each node. The knowledge engineer and

risk manager reviewed the marginal distributions generated

for each of the main output nodes, payment failure, expo-

sure management failure and regulatory/legal/tax failure.

These marginal distributions were compared against the

risk manager’s own subjective judgements, and available

SFO documentation. As is common when parameterizing a

Bayesian network model, the initial marginal distribution

did not immediately fit with the expert’s subjective margi-

nal. This was true for the payment failure node marginal,

suggesting the need for additional CPT parameter tuning.

This tuning process is described in the next section.

Parameter tuning

In the initial parameterization of the Bayesian network

model, the domain experts were asked to provide judge-

ment on events that were highly conditional on other

existing domain states. That is how the CPT parameters

were assessed, as the CPT parameter values are condi-

tional on their parent node values. However, domain

experts will also have judgements, which are based on

what they consider to be the marginal probabilities of

events. That is those events where background condi-

tionals are still considered, but rather ‘averaged’ over a

typical period of time, or transaction volume. These

marginal judgements are also of value when parameteriz-

ing the Bayesian network model as they provide a

standard on which to compare the outputs of the model

against. If there is some disagreement between the experts,

and the model, then adjustments to CPT parameters can

be made. It is these adjustments that constitute the para-

meter tuning process. A detailed, mathematical discussion

of tuning, which is based on Russell et al (1997), Castillo

et al (1996) and Jensen (1999), can be found in Jensen and

Nielsen (2007, pp 218–222).

It is not unusual to elicit marginal distributions from a

domain expert in order to parameterize a model. It is this

approach to elicitation that forms the background to the

technique of probabilistic inversion as described by Bed-

ford and Cooke (2001, Ch.16). In this situation, the

marginal probability distributions are elicited from experts

in order to parameterize a probability model. The elicited

marginal distributions then become input to an inversion

algorithm, which determines the corresponding joint pro-

bability distribution over the model’s parameters. Using

this technique, the model is then able to recreate the

marginals as specified by the experts, as well as other

probabilistic outputs consistent with the model and the

expert’s judgements. Although parameter tuning is not

strictly probabilistic inversion, it is similar in that adjust-

ments to model parameters are identified in order to

obtain an expert’s marginal judgement. The approach

to model parameterization using probabilistic inversion

also demonstrates the legitimacy of using marginals for

parameterization. In the following discussion, we relate the

parameter tuning of the model’s payment failure node.

After completing the CPT parameter entries the model’s

payment failure node registered a marginal probability

of a payment failure of 0.026 for a single transaction. In

terms of an expected or long-term average, this constituted

on average eight payments failures per 300 processed

transactions.7 This exceeded the expectations of the risk

manager and other SFO domain experts who considered

five payment failures per 300 processed transactions to be

a more reasonable assessment. To replicate such an expec-

tation with the Bayesian network model, an a priori

marginal probability of a payment failure would need to

be closer to a probability of 0.017 for a single transaction.8

On the basis of the domain expert’s judgement, it was

decided to re-align the Payment Failure node marginal

distribution by adjusting CPT parameter values within the

network.

In order to remain as faithful as possible to the original

elicited CPT parameter values, it was decided to adjust

only parameters that could be done so without exceeding

either their upper or lower bounds, as specified by the

domain experts, or a one standard deviation measure from

their initial setting. If it was not possible to identify a

parameter satisfying these constraints, then a compromise

was to be made between the marginal distribution target,

and the parameter adjustments applied. A parameter’s

standard deviation was calculated using the Dirichlet

variance expression described in Equation (10).9

The Bayesian network development tool, used in the

creation of the model, included a parameter tuning facility

6The background transaction volumes (ie 1000 transactions) used in

the elicitation questions exceeded the current transaction volume history

of SFO. The motivation for designing the questions around such large

hypothetical loan transaction volumes was to encourage domain experts

to base their responses on their beliefs on the long-term averages within

the domain.

7At the time of the models development, 300 transactions was the risk

manager’s estimate of the number of transactions processed by SFO

during its operational period.
8Care should be taken when interpreting perceived deviations of the

model’s marginal probabilities from any observed domain events, as any

apparent deviations may be due purely to random variation rather than

from any misspecification of the node. This important point was

highlighted by an anonymous referee in his/her comments on an earlier

version of the paper.
9The rational for the Dirichlet distribution is discussed in the

parameter adaption section.
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that allowed a model developer to identify a set of CPT

parameters and their required adjustments, to achieve a

targeted marginal distribution. This facility automatically

tests node CPT parameter adjustments to determine if the

target node constraints can be achieved, and then reports

those CPT parameters that were successful.10 After ente-

ring the target constraint of Pr(Payment Failure¼
true)¼ 0.017 into the tuning facility, two candidate CPT

parameters and their required adjustments were reported

by the facility. The two successful CPT parameters

reported are listed in Table 4.

Of the two candidate CPT parameters identified, neither

could be adjusted without exceeding the one standard

deviation constraint criteria imposed. Adjustment to the

p(Systems Error¼ true) parameter however exceeded the

constraint only slightly. The p(Systems Error¼ true) para-

meter was therefore adjusted from 0.05 to 0.02, an adjust-

ment within one standard deviation, achieving a final

marginal of Pr(Payment Failure¼ true)¼ 0.0172. At the

completion of the probability elicitation process and para-

meter tuning, parameter sensitivity analysis was performed

as described in the following section.

Validation and sensitivity analysis

Parameter sensitivity analysis investigates the sensitivity of

both the a priori Pr(X) and a posteriori Pr(X|e) distributions

to changes in the underlying CPT parameters y located

throughout a network. Within the network, any CPT para-

meter that is d-connected to any other node can influence

the distribution of that node.11 Parameter sensitivity ana-

lysis can be performed using one-, two- or n-way analysis,

whereby up to one, two or n CPT parameters, anywhere in

the network, are varied simultaneously. Their total effect on

the target node’s marginal distribution is then measured to

determine how sensitive the node is to variation in those

parameters. One-way analysis approach, the most common

and easiest to interpret, was used in our model development.

The parameter sensitivity analysis takes advantage of a

convenient mathematical property associated with discrete

Bayesian networks, which states that for any joint probabi-

lity distribution, Pr(Xo|e), over output nodes Xo and evi-

dence e, the distribution is a linear function of a single CPT

parameter, yijk, located anywhere in the network, provided

that the parameter is d-connected with any of the nodes

over which the distribution is defined. This linear function

can be written as

Pr
ijk

Xo ^ eð Þ ¼ f yijk
� �

¼ c1� yijk þ c2 ð2Þ

The subscript ijk indicates that the joint probability

distribution Prijk(Xo|e) is a function of the single CPT

parameter, yijk. This parameter is identified as the condi-

tional probability parameter, for node i, in state j, whose

parents are in their kth configuration. If the parameter yijk
is varied, the joint distribution Prijk(Xo|e) will change at a

rate of c1. From this basic property, the posterior

distribution, Prijk(Xo|e), of the output node Xo conditional

on evidence e is defined as the ratio of two linear functions

Pr
ijk

Xo ejð Þ ¼ Prijk Xo ^ eð Þ
Prijk eð Þ ¼ f yijk

� �
¼ c1� yijk þ c2

c3� yijk þ c4
ð3Þ

Equation (3) is commonly referred to as the sensitivity

function. This function comprises four coefficients, c1, c2,

c3, and c4, which can be readily estimated from four

separate simultaneous equations, two based on one setting

for yijk, and the remaining two based on an alternative

setting for yijk. Jensen and Nielsen (2007, p 188) discusses

in more detail the estimation of c1, c2, c3, and c4.
12

The results described by Equations (2) and (3) will only

hold if two further conditions are also satisfied. The first is

that the other parameters in the j-dimensional vector

Table 4 Candidate parameter changes for payment failure parameter tuning

Node CPT parameter Current
parameter value

Suggested
parameter value

Absolute
change

Log odds
ratio

p(System Error=true) 0.0500 0.0194 0.0306 0.9780
p(Systems Error => Payment Failure=true | System Error=true) 0.0300 0.1165 0.1835 1.1792

Variance Standard deviation Upper bound Lower bound
p(System Error=true) 0.0009 0.0305 0.0805 0.0195
p(Systems Error =4 Payment Failure=true | System Error=true) 0.0021 0.0456 0.3456 0.2544

10Owing to the proprietary nature of the parameter tuning facility,

underlying implementation details are not available.
11The term ‘d-connected’ refers to the relation between nodes within a

DAG. If two or more nodes are d-connected, then changes in one nodes

state will affect the marginal probabilities of states for the other nodes.

In this situation we are referring to changes in parameter values. In this

context d-connected means that if we consider the parameters to the

node, to be actual auxiliary parent nodes, then those auxiliary nodes

must be d-connected.

12The proofs for Equations (2) and (3) can be found in Castillo et al

(1995), with a detailed discussion of their application in Castillo et al

(1997), van der Gaag et al (2007) and Kjærulff and Madsen (2008). A

systematic approach to sensitivity analysis is also described in Bednarski

et al (2004).
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(y1, y2, . . . , )ik must be co-varied proportionally according

to the expression

yraj ¼ y0raj �
1� yj
1� y0j

( )
ik

ð4Þ

The parameters yraj
0 and yj

0 in Equation (4) represent the

original values of the parameters, while yraj and yj repre-
sent the adjusted parameter settings. The second condition

requires that the parameter yijk be non-extreme, located

in the open range (0, 1). The proportional co-variation

constraint equation (4) assumes that the parameters of

node Xi are varied independently of the parameters of all

other nodes, X/i, (ie global independence), and indepen-

dently of all other parameters in Xi’s CPT, which are

conditional on all other non-kth parent configurations

(ie local independence).

For the distribution Prijk(Xo|e), the parameter sensitivity

measure, Sijk
o , is determined by the absolute value of the

first derivative of Equation (3) at yijk

So
ijk ¼

d Prijk Xo ejð Þ
dyijk

����
���� ¼ c1� c4 � c2� c3

c3� yijk þ c4
� �2
�����

����� ð5Þ

The more sensitive Prijk(Xo|e) is to changes in yijk, the
larger the value of Sijk

o . The more sensitive Prijk(Xo|e) is to

changes in yijk, the more elicitation and validation resources

that should be expended to ensure that the yijk’s current

setting is as close to its true value as can be accurately or

subjectively determined. Because of the higher sensitivity,

any small deviation in yijk from its ‘true’ value will result in a

comparatively larger deviation for the marginal, Prijk(Xo|e).

As can be seen from Equation (3), when the network

contains evidence e, the function is a ratio of two linear

functions of yijk. This means that the resultant function takes

the form of a rectangular hyperbola (van der Gaag et al,

2007). The function can therefore have regions of very high

and very long parameter sensitivity. Care must be taken to

ensure that a correct interpretation of parameter sensitivity

is carried out. High sensitivity regions may exist for a node,

but these regions are only problematic if they occur in an

area that is most likely to contain the true value of yijk.
Separate parameter sensitivity analyses were performed

for each of the model’s main output nodes, payment

failure, exposure management failure, and regulatory/tax/

legal failure. The result of each analysis is detailed in

Tables 5 and 6. For each analysis, the initial step was to

take the sensitivity measure of the output node without

evidence present in the network. This provided a ‘first cut’

measure to identify the most influential CPT parameters

for the output node. With no evidence present, Equation

(2) is the relevant sensitivity function and c1 is the

equivalent sensitivity measure Sijk
o . The results for this

initial step are shown in Table 5, which does not identify

T
a
b
le

5
P
a
ra
m
et
er

se
n
si
ti
v
it
y
(n
o
ev
id
en
ce
)

X
o
=
P
a
y
m
en
t
fa
il
u
re

X
o
=
E
x
p
o
su
re

m
a
n
a
g
em

en
t
fa
il
u
re

X
o
=
R
eg
u
la
to
ry
/l
eg
a
l/
ta
x
fa
il
u
re

it
h
N
od
e

m
a
x
S
ij
ko

it
h
N
o
d
e

m
a
x
S
ij
ko

it
h
N
od
e

m
a
x
S
ij
ko

S
y
st
em

E
rr
o
r

0
.2
9

S
y
st
em

E
rr
o
r

0
.1
0

S
y
st
em

E
rr
o
r

0
.0
5

T
ra
n
sa
ct
io
n
T
y
p
e

0
.0
5

T
ra
n
sa
ct
io
n
T
y
p
e

0
.0
3

T
ra
n
sa
ct
io
n
T
y
p
e

0
.0
5

S
y
st
em

E
rr
o
r=

4
P
o
t.
P
a
y
m
en
t
F
a
il
.

0
.0
2

S
y
st
em

E
rr
o
r=

4
P
o
t.
E
x
p
o
se
.
F
a
il
.

0
.0
2

S
y
st
em

E
rr
o
r=

4
P
o
t.
R
eg
u
la
to
ry

F
a
il
.

0
.0
2

D
a
ta

In
te
g
ri
ty

E
rr
o
r=

4
P
o
t.
P
a
y
m
en
t
F
a
il
.

0
.0
2

D
a
ta

In
te
g
ri
ty

E
rr
o
r=

4
P
o
t.
E
x
p
o
se
.
F
a
il
.

0
.0
2

D
a
ta

In
te
g
ri
ty

E
rr
o
r=

4
P
o
t.
R
eg
u
la
to
ry

F
a
il
.

0
.0
2

M
is
ta
k
e

0
.0
2

M
is
ta
k
e

0
.0
2

L
a
p
se

0
.0
2

S
li
p

0
.0
2

M
o
d
e
E
rr
o
r

0
.0
2

L
a
p
se

0
.0
2

S
li
p

0
.0
2

M
o
d
e
E
rr
o
r

0
.0
2

M
is
ta
k
e

0
.0
2

P
a
ra
m
et
er

S
en
si
ti
v
it
y
m
ea
su
re

is
ca
lc
u
la
te
d
u
si
n
g
E
q
u
a
ti
o
n
(5
).
T
h
e
c 1
,c

2
,c

3
,c

4
co
ef
fi
ci
en
ts
in

E
q
u
a
ti
o
n
(5
)
ar
e
n
o
t
sh
o
w
n
b
u
t
es
ti
m
a
te
d
b
y
th
e
B
a
y
es
ia
n
n
et
w
o
rk

to
o
l
w
h
en

ca
lc
u
la
ti
n
g
th
e
p
a
ra
m
et
er

se
n
si
ti
v
it
y
m
ea
su
re
.
T
h
e
p
a
ra
m
et
er

se
n
si
ti
v
it
y
m
ea
su
re

v
a
lu
e
is
sh
o
w
n
u
n
d
er

m
a
x
S
o
ij
k
w
h
ic
h
is
th
e
m
a
xi
m
u
m

se
n
si
ti
vi
ty

m
ea
su
re

fo
u
n
d
in

th
e
it
h
n
o
d
e’
s
C
P
T
,
fo
r
ea
ch

X
o
a
s
th
e
o
u
tp
u
t
n
o
d
e
o
f

in
te
re
st
.
T
h
e
m
a
x
im

u
m

se
n
si
ti
vi
ty

m
ea
su
re

m
a
x
S
o
ij
k
v
al
u
e
re
la
te
s
to

th
e
y i
jk
p
a
ra
m
et
er

in
th
e
it
h
n
o
d
e’
s
C
P
T
.

98 Journal of the Operational Research Society Vol. 66, No. 1



www.manaraa.com

the specific parameter yijk that has the maximum sensitivity

measure, but instead the relevant ith node who’s CPT

contains the parameter with the maximum sensitivity

measure. We have denoted the value of the sensitivity

measure as maxSijk
o . For each output node, a listing from

the highest to the lowest maxSijk
o is provided.

The results displayed in Table 5 show that the System

Error CPT parameters are the most influential on the

Payment Failure node distribution. A sensitivity measure

value of 0.29 means that for an absolute change in the

value of parameter y1¼ p(System Error¼True) of |Dy1|¼
0.01, there would be a resultant absolute change in the

marginal probability of the Payment Failure node of

|DPr(Payment Failure¼True)|¼ 0.0029. This is verified

with the model. By adjusting p(System Error¼True)¼ 0.02

to 0.03, we observe that the marginal Pr(Payment Failure¼
True)¼ 0.0172, changes to 0.0201, a delta of 0.0029. Table 5

shows that all target nodes are particularly sensitive to the

System Error CPT parameters. Each target node’s sensitivity

set is generally consistent with the other target nodes. A

comparatively low sensitivity is recorded for each transaction

type CPT parameter, as well as with the CPT parameters of

each target node’s most immediate, antecedent nodes.

To measure parameter sensitivities of the output node’s

a posteriori distribution, Prijk(Xo|e), evidence e was instan-

tiated into the network. Owing to the large set of candidate

nodes available for instantiation, evidence was restricted to

those nodes considered the main causal antecedents to the

output failure nodes. These included the transaction type,

human error and error type nodes. A manual evidence

generation exercise performed by the knowledge engineer

resulted in 110 evidence sets en, n¼ 1, . . . , 110. Each set

contained different combinations of transaction type,

human error and error event type states.

For each output node Xo, and the evidence set en entered

into the model, the maximum parameter sensitivity, Sijk
o,n,

was recorded. This resulted in 110 maximum parameter

sensitivity measure recordings and the associated ijk

parameter, for each output node.

To calculate an overall parameter sensitivity set for

each output node Xo, each of the 110 sensitivity measure,

Sijk
o,n, were weighted by the evidence set en probability. For

example, the two evidence sets, e8¼ (Transaction Type-

¼ ‘XIRS’, Mistake¼TRUE) and e62¼ (Transaction Type-

¼ ‘EXC-Derive’, System Error¼TRUE), have according

to the model, joint probabilities of Pr(e8)¼ 0.00325 and

Pr(e62)¼ 0.00001941. Under evidence set e62, the ‘System

Error’ node’s CPT parameters are found to be the most

influential, with a maximum absolute sensitivity measure

Sijk
o,62¼ 0.94. Under evidence set e8, the ‘Data Integrity

Error¼4Potential Payment Failure’ node’s CPT para-

meters are found to be the most influential, with a

maximum absolute sensitivity measure Sijk
o,8¼ 0.46. The

‘Data Integrity Error¼4Potential Payment Failure’

node’s sensitivity measure is less than the ‘System Error’

node. Weighting each of these nodes by the joint

probability of the evidence, Pr(e8) � Sp¼ 0.00325 �
0.46¼ 0.0015 versus Pr(e62) � Sp¼ 0.00001941 � 0.94¼
0.00001825, demonstrates that it is better to direct

resources to the node ‘Data Integrity Error¼4 Potential

Payment Failure’, which is the most influential, given the

probability of observing the evidence.

The results from the parameter sensitivity analysis

involving evidence are shown in Table 6. It should be

emphasized that the final listing of nodes, whose CPT

parameters were most influential, is ultimately a function

of the evidence used in the evidence sets. We are confident,

however, that given the breadth of the evidence used, the

identification of those nodes and their CPT parameters

most influential in an instantiated network is valid. Given

that many of the same nodes and CPT parameters were

repeatedly identified, in order to find an overall score, the

probability weighed sensitivity measures were added

together for those nodes and CPT parameters with multi-

ply recordings. Those nodes and CPT parameters with the

highest score were then selected as the most influential,

given all evidence sets. The ordering of influential nodes

shown in Table 6 reflects this where, for example, we see

that the CPT parameters for nodes ‘System Error¼4
Potential Exposure Fail’ and ‘System Error¼4Potential

Regulatory Failure’ are considered to be less influential,

despite having a higher maxSijk
o .

During the validation phase, those CPT parameters iden-

tified as particularly influential were revisited in discussion

with the domain experts responsible for their elicitations.

Following the initial elicitation and parameter tuning exer-

cises however, the validation exercise tended to re-confirm

the expert’s elicitation responses rather than challenge them.

Figure 2 provides a screen shot of the completed model

following elicitation and validation of the network.

Organizational learning through model adaption

After having elicited, calibrated and validated the central

model’s probabilities, the remaining important issue was

the design of a formal process whereby the central model

could be maintained, adapted and improved over time.

Although the use of subjective expert judgement was

unavoidable in the initial construction of the model, in

moving to a post-implementation phase, the arrival of new

event information and the need for ongoing maintenance,

the adaption and improvement of the model could be more

efficiently handled by employing automated adaption

techniques.13

13The adaption of the network model’s CPT parameters involves using

the sequential adaptation algorithm to incorporating new event data as

required. A database was also developed to support the adaption

process, capturing operational events relevant to the model’s adaption.

A document detailing the database design is available from the

corresponding author.
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Parameter adaption

Although a number of parameter adaption algorithms

are now available for Bayesian networks, ‘incremen-

tal updating’, an algorithm developed originally by

Spiegelhalter and Lauritzen (1990), is the one imple-

mented in the tool’s central Bayesian network model.

The conceptual and statistical basis of the incremental

updating algorithm is Bayesian inference (see Gelman

et al, 2004; Lancaster, 2004), which we will first discuss

before looking at the incremental updating algorithm in

more detail.

Bayesian inference can be characterized as the system-

atic application of Bayes Theorem to infer from observed

data, new information on unobserved or unobservable

variables, where such variables may include latent factors

or parameters of a probability model. Bayes Theorem can

be expressed for discrete probability models in the form,

Pr y ejð Þ ¼ Pr e; yð ÞP
y Pr e; yð Þ ¼

Pr e yjð ÞPr yð ÞP
y Pr e yjð ÞPr yð Þ

¼ Pr e yjð ÞPr yð Þ
Pr eð Þ ¼ L y ejð ÞPr yð Þ

Pr eð Þ
/ Pr e yjð ÞP yð Þ ¼ L y ejð ÞPr yð Þ ð6Þ

In the Bayesian theorem representation of Equation (6),

y is the parameter or parameters of the probability model,

while e represents the observations generated from the

data-generating process, Pr(e|y). The data generating

process can be substituted with the likelihood function,

L(y;e). The denominator, referred to as the marginal

likelihood Pr(e), represents the probability of observing the

data e, after integrating over the model parameter(s) y. As

the marginal likelihood is not a function of y, it acts as a
normalizing constant that ensures the posterior distribu-

tion Pr(y|e) integrates to one.

The introduction of prior beliefs over a model’s

parameters y distinguishes Bayesian inference from classi-

cal statistical inference. The prior beliefs represent the

information pertaining to y, prior to observing any new

information e. These prior beliefs are typically described

using a probability distribution function, Pr(y). The

prior can be sourced from an investigator’s subjective

judgements, from a previously inferred posterior dis-

tribution, or from theoretical considerations. Introduc-

tion of a prior in the model adaption process is of great

benefit, as it provides a facility that allows for the

representation of second-order uncertainty over the CPT

parameters.

In eliciting a model’s parameter values, domain experts

often prefer to specify a range over which they believe the

true value is located, rather than a point estimate. A range

providing some facility to indicate the uncertainty associated

with the expert’s beliefs. Narrow ranges implying greater
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certainty whereas broad ranges implying less certainty.

Without the facility to capture uncertainty, all point values

of the CPT parameters appear to be specified with complete

certainty. In the Bayesian network model developed, how-

ever, such a measure of uncertainty can be captured through

the specification of a prior distribution over the CPT

parameters in conjunction with the experience parameter z.
The experience parameter zi for node Xi consists of the

vector zi¼ {zi1, zi2, . . . , zik}. Each element of the experience

vector zi is a positive real number. The experience value

can be interpreted as the count of observations on which

the current CPT parameters are based for the given

parent configuration k. Despite this interpretation,

however, it should be noted that in situations where

new evidence is only partially observed, or considered

highly unlikely, the value of zi can actually decrease due

to the greater parameter uncertainty introduced by the

new observations.

To adapt or infer new CPT parameters when new data

are observed using Bayesian inference it is necessary first

to establish a prior over each of the CPT parameters and

to define the data-generating process Pr(e|y). As this is a

discrete Bayesian network model, the parameters con-

tained within a node’s ( j � k) CPT matrix Yi can be

considered to represent the parameters of k distinct,

j-dimensional, multinominal distributions,

pik e yjð Þ /
Yj
m¼1

yemm

( )
ik

ð7Þ

In the un-normalized representation of a j-dimensional

multinominal represented by Equation (7), the observation

e is a j � 1 vector of counts, where eik¼ {e1, e2, . . . , ej}.

The vector eik contains the number of times that Xi has

been in its jth state, whenever its parent nodes were in their

kth configuration. Although not explicit, the multinominal

distribution of eik in Equation (7) is also conditional on the

total number of trials or observations, which is equal to the

sum of all the counts in eik.

The prior over each of the CPT parameters takes the

form of a Dirichlet distribution, which is the multivariate

version of a Beta distribution. The Dirichlet distribution

has two properties that make it especially efficient for use

in Bayesian inference and parameter adaption within a

discrete Bayesian network. The first property is that it has

sufficient statistics, which makes the storage of information

from past observations very efficient, as all information

Figure 2 Bayesian network model following completion of probability, elicitations, parameter tuning and sensitivity analysis.
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contained within a data sample e can be summarized as

a function of the observed data without any information

loss. The sufficient statistic for a j-dimensional Dirichlet

distribution consists of the counts of the outcomes for each

of the j possible states observed. The Dirichlet prior over

node Xi’s CPT parameters, having j possible states, and a

kth parent configuration, is denoted as Dirichletik (y1, . . . ,
yj|a1, a2, . . . , aj). The Dirichlet prior is parameterized by

the hyperparameters aik¼ {a1, a2, . . . ,aj}ik. These are referred
to as hyperparameters to distinguish them from the model

parameters, yj. A Dirichlet distribution takes the form

pik y1; . . . ; yj a1; . . . aj
��� �

/
Yj
m¼1

yam�1m

( )
ik

ð8Þ

In this un-normalized Dirichlet distribution represented

by Equation (8), each ymX0 and the sum of all ym must be

equal to one. The first and second moments of a Dirichlet

random variable, which will be later shown to play an

important role in incremental updating, are calculated as

follows:

Eik yj
� �
¼ aj

zk

� �
i

ð9Þ

VarikðyjÞ ¼
ajðzk � ajÞ
z2kðzk þ 1Þ

 !
i

¼ EikðyjÞ½1� EikðyjÞ�
ðzk þ 1Þ ð10Þ

where

zkð Þi¼
Xj
m¼1

aj

 !
ik

The ik subscripts indicate that the moments are condi-

tional on the kth parent node configuration for node Xi.

The second valuable property of the Dirichlet distri-

bution is that it is a conjugate prior to the multinominal

distribution. To be a conjugate prior means that the infe-

rred posterior is of the same distributional form as the

prior, that is Dirichlet. This allows the updated posterior

Dirichlet to be used as the new prior, when subsequent

parameter updates are required. This can be seen in Equa-

tion (11), where the hyperparameters of a Dirichlet prior

distribution are updated to become the hyperparameters of

the Dirichlet posterior via the likelihood function.

Yj
m¼1

yamþem�1m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
posterior

8>>>><
>>>>:

9>>>>=
>>>>;

ik

¼
Yj
m¼1

yemm|fflfflffl{zfflfflffl}
likelihood

�
Yj
m¼1

yam�1m|fflfflfflfflffl{zfflfflfflfflffl}
prior

8>>>><
>>>>:

9>>>>=
>>>>;

ik

ð11Þ

In Equation (11), the hyperparameters of the posterior

Dirichlet are calculated by simply adding the observation

counts to the existing prior Dirichlet parameters, where the

posterior hyperparameters are aþ e¼ (a1þ e1, a2þ e2, . . . ,

ajþ ej)ik.

Incremental updating algorithm

In parameter adaption, because all node parameters are

updated together, CPT parameter dependencies must be

taken into account. The adaption process makes two assu-

mptions regarding parameter dependencies. These are refe-

rred to as ‘global independence’ and ‘local independence’

assumptions. With global independence, the assumption is

that each Xi’s CPT parameter can be adapted indepen-

dently of all other node’s CPT parameters. With local

independence, the assumption is that the parameters within

a single node’s CPT can be updated independently for

a given parent configuration k.

Parameter adaption is relatively straightforward when

the evidence used contains observations of all nodes. It

becomes more complex when this is not the case, as the

absence of observed node states creates dependencies

between the nodes and their CPT parameters, making

parameter adaption impossible without reference to other

parameters within the network (Jensen and Nielsen, 2007,

p 207).

The following details of the incremental updating algo-

rithm are discussed in the context of updating a single node

Xi, having j possible states and k parent node configura-

tions. The CPT parameters to be updated, whose current

value settings are derived from previous observations on

Xi, are denoted as pik(Xi|Pak(Xi))¼ (y1, y2, . . . , yj)ik. The

functional relationship between the current CPT parameter

values (y1, y2, . . . , yj)ik, the hyperparameters aik¼ (a1,
a2, . . . , aj) of the Dirichlet prior and the experience

parameter Bk is

y1; y2; . . . ; yj
� �

ik
¼ a1

Bk
;
a2
Bk
; . . . ;

aj
Bk

� �
ik

Each hyperparameter aijk does not need to be stored

explicitly, but can be recovered from the current CPT

parameter values and their experience value, aik¼ (a1,
a2, . . . , aj)ik¼ (zk � y1, zk � y2, . . . , zk � yj)ik. The poster-
ior Dirichlet distribution over node Xi’s parameters is

updated using the rule

pik y1; y2; . . . ; yj a1 þ e1; a2 þ e2; . . . ; aj þ ej
��� �

ð12Þ

The CPT parameter point values are then found from

the posterior using the expectation function as shown in

Equation (9).

In describing the incremental updating algorithm, one

must consider the various ways that data e can be obser-

ved. This is important as it impacts the manner in which

the incremental updating algorithm adapts the CPT para-

meters. The four scenarios under which e can be observed
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include (i) both the state of Xi and the configuration of

Pa(Xi) are observed, (ii) the state of Xi is unobserved while

the configuration of Pa(Xi) is observed, (iii) the state of Xi

is observed while the configuration of Pa(Xi) is unobserved,

and (iv) the state of Xi and the configuration of Pa(Xi) are

both unobserved.

In the first scenario, in which all nodes are observed, the

updating is relatively straight forward and only invol-

ves updating the prior to the posterior as given in Equa-

tion (12). However, when e has incomplete information on

nodes, as in scenarios (ii)–(iv), the states of the unobserved

nodes must be ‘filled-in’ and weighted by their probabi-

lities. When this is the case, the posterior distribution can

no longer be represented as a single Dirichlet distribution

as shown in Equation (12), but instead it must be repre-

sented as a mixture of Dirichlet distributions. This mixture

becomes more complex as the number of separate

incomplete cases used in updating increases. To avoid this

added complexity, the incremental updating algorithm

approximates the mixture distribution by replacing it with

a single Dirichlet distribution whose mean and variance

match those of the mixture.

Using scenario (iv) as the most general case of

incomplete data, the posterior distribution of the para-

meter vector can be shown to be

Pr
ik

y1; y2; . . . yj ej
� �

¼
Xk
q¼1

Xj
r¼1

Pr y Xi rð Þ;Paq Xið Þ; e
��� �

� Pr Xi rð Þ Paq Xið Þ
�� ; e

� �
� Pr Paq Xið Þ ej

� �
ð13Þ

Here the posterior of the parameters (y1, y2, . . . , yj)ik,
having observed e, is calculated by summing over and

eliminating, or integrating out, the unobserved Xi and

Pak(Xi) node states. In Equation (13), Xi(r) implies that Xi

is in state r where r¼ 1, . . . , j. Expanding Equation (13)

shows this mixture of Dirichlet distributions as

Pr
ik

y1; y2; . . . yj ej
� �

¼

Dirichlet y1; y2; . . . yj a1 þ 1j ; a2; :::; aj
� �

� Pr Xi 1ð Þ Pak Xið Þ; ejð Þ � Pr Pak Xið Þjeð Þ
þDirichlet y1; y2; . . . yj a1j ; a2 þ 1; :::; aj

� �
� Pr Xi 2ð Þ Pak Xið Þ; ejð Þ � Pr Pak Xið Þjeð Þ

..

.

þDirichlet y1; y2; . . . yj a1j ; a2; :::; aj þ 1
� �

� Pr Xi jð Þ Pak Xið Þ; ejð Þ � Pr Pak Xið Þjeð Þ
þDirichlet y1; y2; . . . yj a1j ; a2; :::; aj

� �
�
X
qak

X
j

Pr Xi jð Þ Paq Xið Þ; e
��� �

� Pr Paq Xið Þ
��e� �� 	

ð14Þ

Equation (14) can be simplified further by recognizing

that the double summation represents the probability of

not observing the parent configuration k, given evidence e,

which isX
qak

X
j

Pr Xi jð Þ Paq Xið Þ; e
��� �

�Pr Paq Xið Þ
��e� �� 	

¼ 1� Pr Pak Xið Þjeð Þ ð15Þ

The posterior represented by Equation (14) then becomes

Pr
ik

y1; y2; . . . yj ej
� �

¼
Xj
r¼1

Dirichlet y1; y2; . . . yj a1j ; . . . ar þ 1; :::; aj
� ��

� Pr Xi rð Þ Pak Xið Þ; ejð Þ � Pr Pak Xið Þjeð Þg
þDirichlet y1; y2; . . . yj a1j ; a2; :::; aj

� �
� 1� Pr Pak Xið Þjeð Þð Þ ð16Þ

To reduce complexity, Spiegelhalter and Lauritzen

(1990) suggested an approximation where the posterior

mixture in Equation (16) is replaced with a single

approximating Dirichlet distribution.

The incremental updating algorithm uses a moment

matching technique so that the means and average variance

of the single approximating Dirichlet are equal to those of

the Dirichlet mixture. Spiegelhalter and Lauritzen (1990)

recommend calculating the mean of the jth variable for the

posterior mixture as

�yj ¼
Xj
r¼1

�yrj
�
� Pr Xi rð Þ Pak Xið Þ; ejð Þ� Pr Pak Xið Þjeð Þg

þ �y0j � 1� Pr Pak Xið Þjeð Þð Þ ð17Þ

Here �yrj is the expected value or mean of the jth

parameter in the rth mixture component of Equation (16),

while �y0j is the expected value or mean of the jth parameter

in the last component of Equation (16). The mean or

expected values can be calculated using Equation (9). In a

similar manner, the average variance of the jth parameter

of the posterior mixture is given by

�nj ¼
Xj
r¼1

nrj þ �yrj � �yj
� �2
 �n

� Pr Xi rð Þ Pak Xið Þ; ejð Þ � Pr Pak Xið Þjeð Þ
o

þ n0j þ �y0j � �yj
� �2
 �

� 1� Pr Pak Xið Þjeð Þð Þ ð18Þ

where vrj is the variance of the jth parameter of the rth

mixture component of Equation (16), which can be cal-

culated using Equation (10). The average variance of the

variables resulting from the posterior mixture is given by

the probability weighting

nik ¼
Xj
r¼1

�yj ��nj

 !
ik

ð19Þ

The variance of the single approximating Dirichlet is

given by the probability weighting of Equation (10):

~nð Þik¼
Xj
r¼1

�yj �
�yj 1� �yj
� �
zk þ 1

 !
i

ð20Þ
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By equating the average variance of the posterior

mixture, with the variance of the single approximating

Dirichlet, the corresponding posterior value for the new

experience parameter value can be calculated as

) nik ¼ ~nð Þik

)
Xj
r¼1

�yj �
�yj 1� �yj
� �
zk þ 1

 !
i

¼
Xj
r¼1

�yj ��nj

 !
ik

) zik ¼
Xj
r¼1

�y2j 1� �yj
� �
�yj ��nj

� 1

 !
ik

ð21Þ

The CPT values for the kth parent configuration are

then updated with the ( j � 1) vector of mean parameters,

as calculated in Equation (17), while the experience value is

updated with that calculated in Equation (21). Further

discussions with regards to adaption algorithms can be

found in Cowell (1999, pp 198–223), Jensen and Nielsen

(2007, pp 207–214) and in Kjærulff and Madsen (2008,

pp 209–211).

Experience and fading

Prior to any first parameter adaption, the experience para-

meters must be set with their initial values, which were

drawn from the domain expert’s uncertainty levels, cap-

tured during the elicitation process.14 These experience

levels ordered the nodes, states and conditional probabil-

ities in terms of their judged uncertainty, whereby in

invoking the law of large numbers, a lesser degree of

uncertainty warranted a larger initial experience value,

while a greater degree of uncertainty warranted a smaller

initial experience value.

The final parameter associated with the parameter

adaption process is the fading parameter Zi¼ {Zi1, Zi2, . . .
Zik}

T, where each component has a domain in the closed

interval [0, 1]. The fading variable is a (k � 1) vector, with

one component corresponding to each of node Xi’s parent

configurations, k. The fading values Zi determine the long-

run upper bound on the experience value. Bounding the

experience values limits the influence that earlier event

observations have in updating CPT parameters relative to

more recent events. For example, assuming two fading

values, Zik¼ 0.98 and Zik¼ 0.998, the long-run experience,

zk�, has an upper bound of

z�k
� �

i
¼ 1

1� Zk

� �
i

¼ 1

1� 0:98
¼ 50 ð22Þ

and

z�k
� �

i
¼ 1

1� 0:998
¼ 500 ð23Þ

In these two cases, the experience value will not exceed

the long-run value of 50 or 500, respectively. Hence, the

adapted CPT parameters for node Xi, and parent config-

uration Pak(Xi), would capture the influence of only the

last 50 or 500 case events, respectively. In effect, the fading

parameter provides a ‘forgetting’ facility for the adaption

process. As the fading value is reduced, more recent

domain events carry greater weight relative to past

historical events. Having lower experience means that the

variance of the prior Dirichlet is larger, as can be seen in

Equation (10). As the experience parameter zk becomes

larger the variance of the probability parameter becomes

smaller. When updating the posterior through new obser-

vations, if the variance of the prior is larger, the prior will

be less concentrated and therefore will have less influence

over the determination of the new posterior relative to the

information contained within the observed data.

In selecting a preferred long-run experience value, zk�, the
required fading parameter value can be calculated by

rearranging Equation (22) to give

Zik ¼
z�k � 1

z�k

� �
i

ð24Þ

In the final Bayesian network model, the fading para-

meters were set to either 0.99 or 0.995, corresponding to a

long-run experience of either 100 or 200 respectively. The

choice was based on the subjective assessment of each node’s

stationarity or stability and the uncertainty associated with

their probability settings. Those nodes considered compara-

tively stable and certain were set at the higher fading and

experience values, while those considered less stable and

more uncertain were set at lower values. Although the

fading parameters were set to these initial values, the risk

manager still has the discretion to adjust them as required.

Where the structural dynamics of the environment are

changing, the risk manager can reduce the fading parameter

to allow the model to adapt more quickly or, if the envi-

ronment is stable, reset them to a higher value to ensure that

the parameters adapt to signal rather than noise.

Forecasting loss distributions and operational

value-at-risk

A key output of the tool’s central Bayesian network model

is the forecasting of operational loss distributions over a

specified time horizon. From these forecasts a percentile

value known as the OpVaR (which represents the

operational loss value not likely to be exceeded with a

given probability) can be calculated. To specify the forecast

horizon a forward projection of transaction volumes (the

14The uncertainty levels are ‘very high’, ‘high’, ‘medium’, and ‘low’

uncertainty, to which the knowledge engineer assigned equivalent

experience values of 50, 100, 200, and 400, respectively.
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driver of operational loss events) is required. If the risk

manager required an OpVaR estimate at a 99% confidence

level for the next 12 months, then a forward estimate of the

transaction volume for those 12 months would be required.

Using the transaction volume information, they would

then use the Bayesian network model to simulate a set

of alternative event histories, which could then be used to

construct a loss distribution. From the constructed loss

distribution, the corresponding 99th percentile (or OpVaR)

could then be identified.

An advantage of using simulation is that any uncertain-

ties associated with the forward transaction volume esti-

mates, or model parameters for example, can be incorpo-

rated into the outputs. Event frequency and severity

distributions generated from the transaction volume

histories can also be useful in further validating the

Bayesian network model by comparing predicted frequen-

cies and severities with their observed values.

Before an operational loss distribution can be construc-

ted, an appropriate distribution must be identified. For

discrete frequency distributions, the common candidates

include binominal, geometric and Poisson distributions,

while for severity, continuous distributions (such as the

exponential, lognormal, Weibull, gamma, beta, Pareto and

Burr) are often used (see Chernobai et al, 2007). Although

a more rigorous approach to distribution selection would

require formal selection tests, such as a goodness-of-fit

measure for each distribution candidate, a lognormal

distribution is adopted to allow a forecasting demonstra-

tion of operational losses.

To be consistent with the parameter adaption process,

Bayesian inference is used to estimate the operational loss

distribution. Conjugate priors are used to keep the com-

putation of parameter posteriors fast, efficient and com-

paratively straightforward. Therefore inference from priors

to posteriors uses a set of simple updating rules that

combine the prior’s hyperparameters with the likelihood

function’s sufficient statistics.

A lognormal probability density function (pdf) can be

parameterized as,

p y m; qjð Þ ¼
ffiffiffi
q
p

y
ffiffiffiffiffiffi
2p
p exp � q

2
log y�mð Þ2


 �
ð25Þ

Here y 4 0 and the parameters m and q are also greater

than zero. The conjugate prior over the parameters m and q

is a gamma-normal joint distribution, which takes the form

p m; q a; b; t; mjð Þ ¼
qa�1 exp � q

b


 �
G að Þba

�
ffiffiffiffiffiffiffiffiffiffiffi
qt
2p


 �r
exp � qt

2
m� mð Þ2


 �
ð26Þ

The hyperparameters of Equation (26) are a4 0, b4 0,

t 4 0, and m. The updating rules from prior to posterior

where posterior hyperparameters are identified by prime

superscripts, as described in Fink (1997), are

a0 ¼ aþ n

2
; b0 ¼ 1

b
þ 1

2
SS þ tn �y� mð Þ2

2 tþ nð Þ

 !�1

m0 ¼ tmþ n�y

tþ n
; t0 ¼ tþ n ð27Þ

where

�y ¼

P
i

ln yi

n

SS ¼
X
n

ln yi � �yð Þ2

yi in Equation (27) represents observed data, which are

used to update the posteriors. When updating the para-

meters of the prior loss distribution, simulated yi obser-

vations from the Bayesian network model are used to

ensure that the probabilistic information stored within the

network’s structure and CPTs is reflected in the posterior

loss distribution. The n is the sample size used in the

parameter updating, and SS represents the sum of squared

ln yi deviations. Updating rules are quite standard, with

further details available in Raiffa and Schlaifer (1961),

DeGroot (1970) and Fink (1997).

To construct the lognormal operational loss distribution,

the risk manager starts by generating a set of alternative

transaction histories from the Bayesian network model.

Each alternative history comprises a set of transactions.

The number of transactions in each history corresponds

with the forward estimate for the number of transactions

SFO will process over the specified time period. The actual

number of alternative histories generated is at the

discretion of the risk manager, but the larger the number,

the more information that is available for updating the loss

distribution’s parameter posteriors. The total dollar loss

experienced in one alternative history is the sum of the

individual losses simulated from the Actual OpRisk Loss

nodes, shown in Figure 1 and Table 1. For one alternative

history, the value of yi is the total dollar loss experienced.

Therefore, if one thousand alternative transaction histories

were to be generated, the number of yi observations would

be one thousand, i¼ 1, . . . , 1000, and n in Equation (27)

would equal one thousand. Depending on the loss

distribution required by SFO management, the total dollar

loss experienced in an alternative history will be the sum of

individual Actual OpRisk Loss dollar amounts related to

payment failures, exposure management failures, regula-

tory failures, a combination of these, or all of them. How-

ever, the individual loss types used for the total losses in

each alternative history must be consistent. Following the

generation of the simulated yi data, and using the updating

rules described in Equation (27), the posterior gamma-

normal distribution over m and q can then inferred.
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The approach for generating the loss distribution and

OpVaR represents a convolution of the frequency of

operational loss events with their loss severity. This is true

because each transaction in an alternative transaction

history will comprise either no operational event, with of

course no loss, or a single operational loss event and its

associated loss amount. For the one entire alternative

transaction history, the total number of events and the

total loss will represent one transaction history sample,

which is a mixture of loss events and loss amounts or

severities. By generating a large number of alternative

transaction histories this convolution can be captured in

the predictive loss distribution.

A posterior predictive lognormal operational loss

distribution is then constructed using the parameter values

sampled from the gamma-normal posterior. Sampling

from the posterior can be done first by sampling

from the posterior gamma marginal distribution, q|a0,
b0BGamma(a0,b0), and then sampling m from the condi-

tional posterior normal distribution m|q,m0, t0BNormal

(m0, 1/q). Generating a posterior predictive loss distribution

means that the uncertainties associated with the lognormal

parameters can be incorporated. As far as outputs are

concerned, instead of producing a single OpVaR measure,

a distribution over the measure can be generated that

captures the uncertainty associated with it.

In using a Bayesian analysis to generate the operational

loss distribution and OpVaR, priors over the data

generating process parameters must be specified. In

Bayesian inference, hyperparameter values of the prior

are often selected so that as little prior information is

included with regards to the model parameters as possible.

This is done to ensure that the information contained

within the observed data, not the information contained

within the prior, dominates the updating of the posterior.

However, the information content of the prior is less

important when a large set of observations are available, so

the information contained within the data overwhelms the

information contained within the prior. In the next section

we will discuss in more detail the selection of priors over

the model parameters.

Construction of the frequency distribution, which shows

the distribution of the number of loss events over a

prescribed period, is not demonstrated despite being

relatively straightforward. Using a Binominal distribution

to represent the frequency distribution of operational loss

events, the parameter of the binominal model can be

estimated using output from the simulated alternative

histories described. The observations in this case are not

the loss total, but instead the counts of operational loss

events within any given history. The set of observed counts,

generated from the alternative histories, can be used to

update a Beta-Binominal model, where the Beta distribu-

tion is the conjugate prior of the Binominal. The posterior

Beta can then be used to sample parameters for the

posterior-predictive Binominal frequency distribution. Al-

ternatively, instead of sampling parameters from the

posterior Beta, the mean of this distribution can be used

instead as the representative parameter of the posterior-

predictive Binominal frequency distribution.

Despite the straightforward method described above

to generate loss distributions and OpVaR values, the

approach does have some disadvantages. The Bayesian

network model is now detached or separated from the

loss distribution model and OpVaR determination, even

though the probabilistic information stored in the Bayesian

network model is transmitted and summarized by the loss

distribution. The disadvantage of this separation is that

diagnostic inference cannot be performed, implying that

the user cannot specify an observation on a child node and

then infer the probable states of its parents and remaining

nodes within the network that are d-connected. It is this

inference, which is one of the strengths of Bayesian net-

work models, as they are able to perform not only predic-

tive inference from parent to child, but also diagnostic

inference from child to parent. With the separation of the

operational loss distribution model from the Bayesian

network, only conditional and unconditional predictive

inference can be performed. Retaining diagnostic inference

would allow the risk manager to identify the most probable

marginal distributions of causal antecedent nodes for a

given loss distribution, as specified by the risk manager.

This information would more easily assist the risk manager

in identifying variables within the domain that would

warrant operational improvement. Neil et al (2009) describe

an operational risk model that allows the underlying

Bayesian network model to incorporate the loss distri-

bution directly. Neil et al (2009) use a Bayesian network

that allows for dynamic discretization, which provides for

greater flexibility in approximating continuous distri-

butions, such as a loss distribution, through automated

discretization.

Model application: a hypothetical case study

The following hypothetical case study describes in more

detail the application of the Bayesian network model in

generating a predictive operational loss distribution and

the OpVaR. How the model adapts to a changing

operational environment will also be illustrated. The SFO

case study uses the following hypothetical scenario:

Operational Scenario: Due to a sudden increase in staff turn-

over in SFO, two new staff members, an operational manager

and analyst, are appointed. The introduction of less experi-

enced staff members into SFO leads to an increase in the

incidence of transaction implementation errors, which leads

to an increase in payment failures. On investigation, the risk

manager finds these error events to have been in part the

result of a decline in the effectiveness of oversight control.
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During the operational period in which the scenario takes

place, the SFO risk manager records the operational

information related to SFO transaction processing. The

operation event information is stored within the event

capture database tool, which captures 116 transaction

records.15 Of these 116 transactions, 61 were loans, nine

deposits, two FX, 15 unlisted equities, four listed equities,

five interest rate swaps, 11 preference equities and nine

finance leases.

To compare the predictive performance of various

adapted models in the case study scenario, the logarithmic

score (LS) metric (Cowell et al, 2007) is applied. The LS

metric is defined as,

LSM ¼
X
m

� lnP mð Þ emð Þ ð28Þ

The LS metric in Equation (28) is the sum of the

negative logarithm of the probability P(m) of observing the

state em of themth event transaction. Observing events that

have a low probability generates a higher score than events

that are considered more likely. A better performing model

will have less ‘surprise’ events and a lower LS score. Cowell

et al (2007) provide further details on model assessment,

including absolute standardization and model monitors.

In order to gauge the impact of model adaption on the

LS metric and the aggregate loss distributions produced,

three separate adaption processes were performed produ-

cing three adapted Bayesian network models. Each of the

three adaption processes begins from the same initial

baseline model, B0, which is the complete, fully para-

meterised, Bayesian network model described in Figure 1

and Table 1.16

For each adaption process the 116 scenario event records

are entered into the B0 model sequentially, one record at a

time. The LS and cumulative LS metrics is record for each

record. In the first process, no adaption was used to pro-

vide a benchmark cumulative LS metric score. This model

was designated as B1, which was identical to the B0 model.

In the second process, adaption was used, resulting in the

model B2. The third process resulted in the adapted model

B3. B3 differed from B2 in that the fading parameter values

of the baseline model B0 were adjusted downwards,

creating upper bounds on the experience values that were

50% of those in the B2 model. A node in B2 that had

a maximum experience value of 200 would have a maxi-

mum experience value in B3 of 100. This adjustment was

done to provide a demonstration of the fading factor’s

impact on the adaption performance.

The cumulative LSM for each adaption process were

recorded at 45.4 for B1 (no adaption), 44.5 for B2 (adap-

tion), and 43.5 for B3 (adaption with (w/-) 50% effective

sample size). The lower cumulative LSM demonstrated the

improved performance of the two adapted models, B2 and

B3, over the static model B1, registering fewer ‘surprise’

observations. The B3 model, having the smallest LSM

metric, demonstrated an improved adaptive performance

after its upper bounds on the experience value were

constrained further.

After the adaption exercises, aggregate lognormal

operational loss distributions were constructed. To esti-

mate aggregate loss distributions, data were first simulated

from each of the three models, B1, B2 and B3. For each

model, 300 distinct 12-month-long event histories were

simulated, containing 100 transaction events.17 Using 300

histories was arbitrary, although motivated by the desire

to ensure a large representation of ‘possible SFO worlds’.

The number of histories used is ultimately at the discretion

of the risk manager.

Using the simulated event histories, the parameters of

the aggregate loss distribution were estimated. Because

Bayesian inference is used, the risk manager must provide

priors over the parameters of the lognormal model of

the aggregate losses. Here we have assumed that the risk

manager has an a priori set of beliefs regarding the para-

meters values, based on their previous aggregate loss

experience within SFO.

The gamma-normal conjugate prior distribution is used

to represent the risk manager’s prior beliefs over the

parameters of the lognormal aggregate loss model. These

prior distributions may be set directly by the risk manager,

or instead, be based on the posterior of the previous

period’s loss model.

The prior and posterior hyperparameter values for the

gamma-normal distribution and the sufficient statistics

used to update the prior settings to their posterior values

are displayed in Table 7. The sufficient statistics in Table 7

are derived from B1’s simulate data. Because B1 was not

adapted during the processing of the 116 transaction event

records, it contains the a priori beliefs for SFO’s risk profile

prior to the new transaction event observations. For this

reason, data simulated from B1 are used to construct the

initial gamma-normal prior used to represent the risk

manager’s prior beliefs. Two posteriors are inferred, one

using data simulated from B2 and the other from B3.

To provide further confirmation to the risk manager

that the information contained within the prior reflects

their subjective beliefs, a prior predictive aggregate loss

15The data used in the hypothetical case study were produced by

simulating event records from the initial a priori Bayesian network

model after evidence on transaction characteristics, human errors, error

types, and operational event failures had been entered into the network.

Subsequently, to reflect the changing risk profile of SFO, 10 of the

generated loan transactions were modified to record payment failure

events (caused by transaction implementation errors and oversight

control errors) thus resulting in an apparent increase in these events.
16It was also model B0 that was used to generate the hypothetical 116

event records for use in the hypothetical case study.

17The number of 100 transaction events per history approximated the

expected count over a single year of SFO loan transaction activity.
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distribution is also generated. The prior predictive agg-

regate loss information is the result of integrating over the

joint probability distribution of observed operational loss

data, Y, and the parameters of the lognormal loss model,m

and q. The prior predictive distribution is the integral

Pr Yð Þ ¼
Z
Rþ

Z
Rþ

Pr Y m; qjð ÞPr m; qð Þ dq dm ð29Þ

Here Pr(m, q) is the gamma-normal prior distribution

over the hyperparameters m and q and Pr(Y|m, q) is the

lognormal loss model. The prior predictive distribution,

Pr(Y), is obtained by integrating over the domains of m

and q. Sample values of m and q were drawn from the

gamma-normal prior Pr(m,q), followed by the sampling of

an operational loss value Y from the lognormal distribu-

tion, indexed by the sampled values (m, q) parameters. Ten

million losses were simulated for the prior predictive

distribution Pr(Y), which are summarized in Table 8.

The summary information provided in Table 8 shows

that each set of priors specifies a different set of beliefs

regarding aggregate losses. For example, the prior with

hyperparameters a¼ 10, b¼ 1, m¼ 11 and t¼ 50 pro-

duces a prior predictive aggregate loss distribution over

a 12-month period with mean losses of $63,481 and

a standard deviation of $21,660. The prior predictive 99%

OpVaR has an expected value of $130,489 and a standard

deviation of $19,985. Although it is usual for a quoted

OpVaR to be a fixed loss amount (because the aggregate

loss distribution is simulated over a range of possible para-

meter values, (m, q)), the parameter uncertainty can be

taken into account that results in a distribution for the

99% OpVaR value. The remaining priors given in Table 8

show a range of possible OpVaRs, starting with a

minimum of $67,572 up to a maximum of $623,517. More

importantly, the posteriors results given in Table 9 show

a convergence of OpVaRs, after the priors have been

updated using the simulated loss data from B1.

The posterior predictive aggregate loss and OpVaR

distributions are shown in Table 9. Similar to the prior

predictive, the posterior predictive losses and OpVaRs are

calculated via simulation, this time taking samples of the

(m, p) parameters from the posterior gamma-normal

distribution. Table 9 shows that most of the posterior

Table 9 Posterior predictive aggregate loss distribution and OpVaR (99%) for non-adapted B1 model

Posterior Aggregate loss distribution summary OpVaR (99%)

a b m t Mean Standard deviation 25% 50% 99% Mean Standard deviation

127.5 0.029734 11.22814 285 $85,911 $47,339 $53,174 $75,250 $249,097 $249,561 $15,946
217.5 0.007397 11.14947 435 $95,007 $88,280 $40,807 $69,503 $436,825 $437,339 $32.130
127.5 0.029999 11.29175 240 $91,581 $50,274 $56,790 $80,248 $264,898 $264,918 $16,027
127.5 0.026995 11.25008 240 $89,085 $51,830 $53,484 $76,963 $270,518 $270,589 $17,581

Table 7 Gamma-normal prior to posterior parameter values

Prior Sufficient statistics Posterior

a b m t �y SS n a b m t

10 1 11 50 11.276676 62.108010 235 127.5 0.029734 11.22814 285
100 0.01 11 200 11.276676 62.108010 235 217.5 0.007397 11.14947 435
10 1 12 5 11.276676 62.108010 235 127.5 0.029999 11.29175 240
10 0.5 10 5 11.276676 62.108010 235 127.5 0.026995 11.25008 240

Posterior parameters updated using simulated data from non-adapted B1 model. The sufficient statistics include �y =average of ln yi over sample

observations, SS=sum of squared ln yi deviations, and n=sample size.

Table 8 Prior predictive aggregate loss distribution and OpVaR (99%)

Prior Aggregate loss distribution summary OpVaR (99%)

a b m t Mean Standard deviation 25% 50% 99% Mean Standard deviation

10 1 11 50 $63,481 $21,660 $48,049 $60,007 $130,489 $130,626 $19,985
100 0.01 11 200 $99,565 $131,245 $30,547 $60,053 $622,724 $623,517 $86,081
10 1 12 5 $172,915 $58,561 $131,219 $163,571 $353,904 $353,959 $91,757
10 0.5 10 5 $25,130 $12,505 $16,420 $22,463 $67,446 $67,572 $21,092
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predictive distributions of the OpVaR have now converged

towards a range from $249,561 to $270,589, while the

larger of the OpVaRs has shrunk from $623,517 to

$437,339. The posterior parameter settings shown in

Table 9 are used as the prior settings for updating the

aggregate loss distribution based on the data simulated

from B2 and B3.

Table 10 displays the posterior hyperparameter values

inferred from the prior and sufficient statistics generated

from the B2 model. Summary details of the posterior

predictive aggregate loss and OpVaR are found in

Table 11, where it can be seen that all aggregate loss

distributions have achieved mean losses in the range

$92,000—$98,000. The changes in the posterior aggregate

loss and OpVaR distributions can be seen graphically in

Figure 3. As expected, given the increasing risk profile for

SFO under the case study scenario, payment failures

during loan transaction events have increased with the

result that the mean aggregate losses have all increased

upward. The OpVaRs based on the B1 data have increased

Table 10 Gamma-normal prior to posterior parameter values

Prior Sufficient statistics Posterior

a b m t �y SS n a b m t

127.5 0.029734 11.22814 285 11.383787 67.644414 244 249.5 0.014483 11.29993 529
217.5 0.007397 11.14947 435 11.383787 67.644414 244 339.5 0.005770 11.23367 679
127.5 0.029999 11.29175 240 11.383787 67.644414 244 249.5 0.014778 11.33815 484
127.5 0.026995 11.25008 240 11.383787 67.644414 244 249.5 0.013899 11.31749 484

Posterior parameters updated using simulated data from adapted B2 model. The sufficient statistics include �y =average of ln yi over sample

observations, SS=sum of squared ln yi deviations, and n=sample size.

Table 11 Posterior predictive aggregate loss distribution and OpVaR (99%) for adapted B2 model

Graph Posterior Aggregate loss distribution summary OpVaR (99%)

a b M T Mean Standard deviation 25% 50% 99% Mean Standard deviation

(a) 249.5 0.014483 11.29993 529 $92,846 $52,383 $56,717 $80,841 $274,634 $274,963 $12,620
(b) 339.5 0.005770 11.23367 679 $97,644 $79,625 $46,714 $75,639 $398,043 $399,195 $22,195
(c) 249.5 0.014778 11.33815 484 $96,191 $53,738 $59,076 $83,966 $282,335 $282,271 $12,637
(d) 249.5 0.013899 11.31749 484 $95,165 $55,148 $57,264 $82,328 $287,866 $287,983 $13,413
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0
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0
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a b

c d

Figure 3 Posterior predictive aggregate loss and OpVaR distributions. Solid line is the posterior predictive aggregate loss
distribution; dashed line is the prior predictive loss distribution. Distribution shown in the tail of the aggregate loss distribution is the
posterior predictive OpVaR distribution at a confidence level of 99%.
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from $249,561 to $274,963, $264,918 to 282,271, and

$270,589 to $287,983, after updating with the B2 data,

while the higher OpVaR has declined from $437,339 to

$399,195. The standard deviations of OpVaRs have also

reduced.

Finally, Tables 12 and 13 show the posterior hyperpara-

meters and posterior predictive aggregate loss and OpVaR

distributions inferred from the prior generated from B1 and

the sufficient statistics from B3’s simulated data. The results

in Table 13 show that B3, having adapted more readily to

the changing SFO environment than B2, is now producing

posterior predictive aggregate loss distributions whose

central locations have moved further outwards, with mean

losses now occupying a range from $108,000 to $113,000.

The 99% percentile has also extended outwards by nearly

another $80,000, while the OpVaRs increased to a new

range of $356,381 through to $479,814. Figure 4 shows in

graphically the changes in the posterior predictive aggre-

gate losses and OpVaR distributions, which are more

extreme than those displayed in Figure 3.

In the case study, the risk manager must decide on which

of the aggregate loss distributions reflect SFO’s new risk

profile. They can check their prior beliefs of SFO’s risk

profile by generating a priori predictive aggregate losses

3.5e-5

0

0

$0 $250k $500k

$0 $250k $500k $0 $250k $500k

$0 $250k $750k$500k

2.0e-5

2.0e-52.0e-5

0

0

Figure 4 Posterior predictive aggregate loss and OpVaR distributions. Solid line is posterior predictive aggregate loss distribution;
dashed line is prior predictive loss distribution. Distribution shown in the tail of the aggregate loss distribution shows the posterior
predictive OpVaR distribution at a confidence level of 99%.

Table 12 Gamma-normal prior to posterior parameter values

Prior Sufficient statistics Posterior

a b m t �y SS n a b m t

127.5 0.029734 11.22814 285 11.620052 91.655200 272 263.5 0.011093 11.41952 557
217.5 0.007397 11.14947 435 11.620052 91.655200 272 353.5 0.005011 11.33051 707
127.5 0.029999 11.29175 240 11.620052 91.655200 272 263.5 0.011623 11.46616 512
127.5 0.026995 11.25008 240 11.620052 91.655200 272 263.5 0.010917 11.44663 512

Posterior parameters updated using simulated data from the adapted B3 model. The sufficient statistics include �y =average of ln yi over sample

observations, SS=sum of squared ln yi deviations, and n=sample size.

Table 13 Posterior predictive aggregate loss distribution and OpVaR (99%) for adapted B3 model

Graph Posterior Aggregate loss distribution summary OpVaR (99%)

a b M T Mean Standard deviation 25% 50% 99% Mean Standard deviation

(e) 263.5 0.011093 11.41952 557 $108,253 $69,196 $61,425 $91,184 $356,026 $356,381 $17,912
(f) 353.5 0.005011 11.33051 707 $110,480 $96,261 $50,105 $83,249 $478,553 $479,814 $25,846
(g) 263.5 0.011623 11.46616 512 $112,456 $69,934 $64932 $95,484 $360,773 $361,590 $17,496
(h) 263.5 0.010917 11.44663 512 $111,313 $71,845 $62,800 $93,515 $368,951 $369,505 $18,517
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and OpVaRs based on a set of alternative gamma-normal

priors. If they believed that the prior (a¼ 127.5,

b¼ 0.029734, m¼ 11.22814, t¼ 285) best reflects their prior

beliefs, their likely preferred posterior result would be

either (a) in Table 11 (based on B2) or (e) in Table 13

(based on B3), depending on their choice of fading factor.

Conclusions and future research

In this research, an operational risk modelling tool has

been constructed and its application demonstrated. It is

designed to support a business unit level operational risk

manager in recording, modelling, analysing, communicat-

ing, and predicting operational losses. Central to the tool is

a Bayesian network model that encapsulates the probabil-

istic and causal relationships between the key risk factors

and operational losses within the domain. Application of

the tool has been demonstrated, with predictive opera-

tional loss distributions and OpVaRs being generated from

probabilities stored within the Bayesian network model.

The central model underlying the tool is sufficiently

modular to allow it to support the inclusion of future,

alternative causal antecedents, as deemed necessary by the

operational risk experts within SFO, without the need for

costly re-modelling. This modularity also supports the

application of the operational risk tool to other similar

operational environments.

The initial construction of the Bayesian network model

was carried out using probability elicitation, parameter

tuning and model validation techniques. The initial develop-

ment placed considerable demands on the SFO staff invol-

ved, which prompted a search for opportunities to increase

the level of automated model adaption to aid the tool’s

response to new events and the changing risk dynamics

within the SFO. The current automation of model adaption

has been restricted to parameter updating only, although

automated structural adaption will be investigated in future

research for the purpose of improving the tool.

As was mentioned earlier in the description of the model,

continuous valued nodes were approximated by static

discretization, achieving a satisfactory representation of the

environment, rather than an optimal one. A number of

authors have suggested alternative techniques for approx-

imating continuous nodes that warrant future investiga-

tion. These alternatives include dynamic discretization

(Neil et al, 2008), mixtures of truncated exponentials (Cobb

and Shenoy, 2008) and variational methods (Murphy,

1999). For any alternative approach, however, given the

central importance to the operational risk tool of auto-

mated model adaption, a critical selection criterion will be

the availability of efficient model adaption algorithms.
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Coupé VMH, Peek N, Ottenkamp J and Habbema JDF
(1999). Using sensitivity analysis for efficient quantification
of a belief network. Artificial Intelligence in Medicine 17(3):
223–247.

Cowell RG (1999). Probabilistic Networks and Expert Systems.
Springer: New York.

Cowell RG, Verrall RJ and Yoon YK (2007). Modeling opera-
tional risk with Bayesian networks. Journal of Risk Insurance
74(4): 795–827.

Davis GA (2003). Bayesian reconstruction of traffic accidents. Law,
Probability and Risk 2(2): 69–89.

DeGroot MH (1970). Optimal Statistical Decisions. McGraw-Hill
Book Company: New York.

Fenton N and Neil M (2000). Bayesian belief networks: A causal
model for predicting defect rates and resource requirements.
Software Testing and Quality Engineering 2(1): 48–53.

Fenton N, Littlewood B, Neil M, Strigini L, Sutcliffe A and
Wright D (1998). Assessing dependability of safety critical
systems using diverse evidence. IEE Proceedings – Software Eng
145(1): 35–39.

Fink D (1997). A compendium of conjugate priors. Available
at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157
.5540.

Granger-Morgan M and Henrion M (1990). Uncertainty: A Guide
to Dealing with Uncertainty in Quantitative Risk and Policy
Analysis. Cambridge University Press: Cambridge.

Gelman A, Carlin B, Stern HS and Rubin DB (2004). Bayesian Data
Analysis. 2nd edn, Chapman & Hall/CRC: Boca Raton, FL.

Groth K, Wang C and Mosleh A (2010). Hybrid causal metho-
dology and software platform for probabilistic risk assessment
and safety monitoring of socio-technical systems. Reliability
Engineering & System Safety 95(12): 1276–1285.

Jensen FV (1999). Gradient descent training of Bayesian networks.
In: Hunter A and Parsons S (eds) Proceedings of the Fifth
European Conference on Symbolic and Quantitative Approaches to
Reasoning under Uncertainty, Lecture Notes in Artificial Intelli-
gence. Springer-Verlag: New York, pp 190–200.

Jensen FV and Nielsen TD (2007). Bayesian Networks and
Decision Graphs. Springer Science + Business Media, LLC:
New York.

Kadane JB and Schum DA (1996). A Probabilistic Analysis of the
Sacco and Vanzetti Evidence. Wiley: New York.

Kemmerer B, Mishra S and Shenoy PP (2002). Bayesian causal
maps as decision aids in venture capital decision making: Methods
and applications. Working Paper, University of Kansas.

Khodakarami V, Fenton N and Neil M (2007). Project scheduling:
Improved approach to incorporate uncertainty using Bayesian
networks. Project Management Journal 38(2): 39–49.

Kjærulff U and Madsen A (2008). Bayesian Networks and Influence
Diagrams: A Guide to Construction and Analysis. Springer: New
York.

Koller D and Friedman N (2009). Probabilistic Graphical Models:
Principles and Techniques. MIT Press: Cambridge, MA.

Korb KB and Nicholson AE (2004). Bayesian Artificial Intelligence.
Chapman & Hall/CRC: Boca Raton, FL.

Lancaster T (2004). An Introduction to Modern Bayesian Econo-
metrics. Blackwell Publishing: Padstow (Cornwall).

Lauritzen SL and Spiegelhalter DJ (1988). Local computations with
probabilities on graphical structures and their application to
expert systems (with discussion). Journal of the Royal Statistical
Society Series B 50(2): 157–224.

Lucas PJ, van der Gaag LC and Abu-Hanna A (2004). Bayesian
networks in biomedicine and health-care. Artificial Intelligence in
Medicine 30(3): 201–214.

Marquez D, Neil M and Fenton N (2010). Improved reliability
modeling using Bayesian networks and dynamic discretization.
Reliability Engineering & System Safety 95(4): 412–425.

Mittnik S and Starobinskaya I (2010). Modeling dependencies in
operational risk with hybrid Bayesian networks. Methodology
and Computing in Appl 12(3): 379–390.

Moosa IA (2008). Quantification of Operational Risk under Basel II:
The Good, Bad and Ugly. Palgrave Macmillan: London.

Moosa IA (2010). Basel II as a casualty of the global financial crisis.
Journal of Banking Regulation 11(2): 95–114.

Moosa IA (2011). Basel II and Basel III: A great leap forward? In:
La Brosse JR, Olivares-Caminal R and Singh D (eds) Managing
Risk in the Financial System. Edward Elgar: Cheltenham.

Moosa IA (2012). Basel 2.5: A lot of sizzle but little nutritional
value. Journal of Banking Regulation 13(4): 320–335.

Moosa IA and Burns K (2012). Basel III as a regulatory response to
the global financial crisis. International Journal of Applied
Business and Economic Research 10(1): 31–44.

Murphy K (1999). A variational approximation for Bayesian
networks with discrete and continuous latent variables. In:
Laskey K and Prade H (eds) Uncertainty in Artificial Intelligence,
Vol. 15, Morgan Kaufmann Publishers Inc: Burlington, MA,
pp 467–475.

Neapolitan RE (2004). Learning Bayesian Networks. Prentice-Hall:
Harlow.

Neil M, Fenton N and Nielsen L (2000). Building large-scale
Bayesian networks. Knowledge Engineering Review 15(3):
257–284.

Neil M, Fenton N, Forey S and Harris R (2001). Using Bayesian
belief networks to predict the reliability of military vehicles.
Computing and Control Engineering 12(1): 11–20.

Neil M, Fenton N and Tailor M (2005). Using Bayesian networks
to model expected and unexpected operational losses. Risk
Analysis 25(4): 963–972.

Neil M, Tailor M, Marquez D, Fenton N and Hearty P (2008).
Modelling dependable systems using hybrid Bayesian networks.
Reliability Engineering & System Safety 93(7): 933–939.
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Appendix A

Human error definitions

The following human error categories and definitions have

been taken from Reason (1990) and Wickens and Hollands

(2000).

Mistake

A mistake is defined as an error that occurs when an

operator fails to formulate the correct intentions. Possible

causes include failures in perception, memory, and/or

cognition. Normally ‘mistakes’ can be further categorized

into ‘knowledge’-based mistake, that is, Decision Making,

where an incorrect plan of action is developed due to a

failure to understand the operational situation. Alterna-

tively, ‘rule’-based mistakes can also occur, for example,

when an operator knows or believes they know the

situation and invoke a rule or plan of action to deal with

it. These action rules usually take the form of an ‘IF-

THEN’ logic. The rule-based mistake occurs when a

‘Good’ rule is misapplied, that is, when the IF condition

does not apply to the current environment or when a ‘Bad’

rule is learned and subsequently applied.

Slip

Slips are defined as errors that involve the correct

intention implemented incorrectly. Capture errors are a

common class of slip in which an intended stream of

behaviour is ‘captured’ by a similar, well-practiced

behaviour pattern. Slips occur under three different

scenarios. The first scenario is where the intended action

or action sequence involves a slight departure from a

routine, or frequently performed action. The second is

where some characteristics of the stimulus environment

or the action sequence itself are related to the now

inappropriate action. And thirdly, the action sequence is

relatively automated and therefore not monitored

closely by the operator’s attention.

Lapse

A lapse error is defined as the failure to carry out an

action. Lapses can be directly related to failures of

memory. They are however different from knowledge-

based mistakes associated with the overloading of opera-

tors working memory, resulting in poor decision making.

Important lapses may involve the omission of steps

in a procedural sequence. In this situation, an interrup-

tion is what often causes the sequence to be stopped,
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then restarted again a step or two later than it should have

been.

Mode error

A mode error is closely related to a slip, but also has the

memory failure characteristics of lapses. A mode error

results when a particular action that is highly appropriate

in one mode of operation is performed in a different,

inappropriate mode because the operator has not correctly

remembered the appropriate context.

Appendix B

Workload definitions

The following workload definitions are drawn from the

SWAT described in Wickens and Hollands (2000) and

Reid and Nygren (1988). The following table is reproduced

from Wickens and Holland’s Table 11.1 (Wickens and

Hollands, 2000, p 467). The SWAT comprises three

dimensions, Time Load, Mental Effort Load and Stress

Load, each of which has a rating scale 1–3. Combination of

each to an overall workload rating is achieved by adding all

ratings together.

Time load
Measures the time pressures experienced by the operator

during the current task.

Rating

1¼ Often have spare time. Interruptions or overlap

among activities occur infrequently or not at all.

2¼ Occasionally have spare time. Interruptions or over-

lap among activities occur frequently.

3¼ Almost never have spare time. Interruptions or

overlap among activities are very frequent, or occur

all the time.

Mental effort load

Measures the mental load experienced by the operator

involved in the current tasks.

Rating

1¼ Very little conscious mental effort or concentration

required. Activity is almost automatic, requiring little

or no attention.

2¼ Moderate conscious mental effort or concentration

required. Complexity of activity is moderately high

due to uncertainty, unpredictability, or unfamiliarity.

Considerable attention required.

3¼ Extensive mental effort and concentration necessary.

Very complex activity requiring total attention.

Stress load

Measures the psychological load experienced by the

operator during the current tasks.

Rating

1¼ Little confusion, risk, frustration, or anxiety exists

and can be easily accommodated.

2¼ Moderate stress due to confusion, frustration, or

anxiety noticeably adds to the workload. Significant

compensation is required to maintain adequate

performance.

3¼ High to very intense stress due to confusion,

frustration, or anxiety. High to extreme determina-

tion and self-control required.

Work load states

The states are defined under the Work Load node and

present an overall environmental impression combining the

time, mental effort, and stress load factors. The overall work

load state is a simple summed combination of the individual

factor states. Hence the work load states are from 3 to 9.

State Description of work load states

3–o5 Lower Bound Working Environment (3):

(a) Often have spare time. Interruptions or

overlap among activities occur infrequently or

not at all. (b) Very little conscious mental effort

or concentration required. Activity is almost

automatic, requiring little or no attention.

(c) Little confusion, risk, frustration, or anxiety

exists and can be easily accommodated.

Upper Bound Working Environment o5:

Replace any of the above with two from

(a) Occasionally have spare time. Interruptions

or overlap among activities occur frequently.

(b) Moderate conscious mental effort or

concentration required. Complexity of activity

is moderately high due to uncertainty,

unpredictability, or unfamiliarity. Considerable

attention required. (c) Moderate stress due to

confusion, frustration, or anxiety noticeably

adds to the workload. Significant

compensation is required to maintain adequate

performance.

5–o7 Lower Bound Working Environment (5): (a)

Occasionally have spare time. Interruptions or

overlap among activities occur frequently. (b)

Moderate conscious mental effort or

concentration required. Complexity of activity
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State Description of work load states

is moderately high due to uncertainty,

unpredictability, or unfamiliarity. Considerable

attention required. (c) Moderate stress due to

confusion, frustration, or anxiety noticeably

adds to the workload. Significant

compensation is required to maintain adequate

performance.

Upper Bound Working Environment (o7):

Replace any of the above with any one from

(a) Almost never have spare time. Interruptions

or overlap among activities are very frequent,

or occur all the time. (b) Extensive mental

effort and concentration necessary. Very

complex activity requiring total attention.

(c) High to very intense stress due to confusion,

frustration or anxiety. High to extreme

determination and self-control required.

7–9 Lower Bound Working Environment (7):

Replace any two of the following with two

from below (a) Occasionally have spare time.

Interruptions or overlap among activities occur

frequently. (b) Moderate conscious mental

effort or concentration required. Complexity

of activity is moderately high due to

uncertainty, unpredictability, or unfamiliarity.

Considerable attention required. (c) Moderate

stress due to confusion, frustration, or anxiety

noticeably adds to the workload. Significant

compensation is required to maintain adequate

performance.

Upper Bond Working Environment (9):

(a) Almost never have spare time. Interruptions

or overlap among activities are very frequent,

or occur all the time. (b) Extensive mental

effort and concentration necessary. Very

complex activity requiring total attention.

(c) High to very intense stress due to confusion,

frustration or anxiety. High to extreme

determination and self-control required.

Appendix C

TMG model operational error definitions

Data integrity error

Definition: Error involving the data capture of transaction

information either into a manual/spread sheet-based

system or an automated bank legacy information system.

Transaction implementation error

Definition: Error involving the implementation of a trans-

action. Note if the error created is due to a data capture

error, then this is not an implementation error but a data

integrity error.

Oversight control error

Definition: Error involving oversight control. This could

include reconciliation control, ‘four eyes, six eyes’ review,

signoffs, limit control, discretion levels etc.

System error

Definition: Error involving the failure of a bank legacy infor-

mation system. Such an error could involve system avai-

lability, program error, hardware fault, power outage etc.
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